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A B S T R A C T

It is known that the solution of a conservative steady-state two-sided fractional diffusion
problem can exhibit singularities near the boundaries. As a consequence of this, and due to the
conservative nature of the problem, we adopt a finite volume elements discretization approach
over a generic non-uniform mesh. We focus on grids mapped by a smooth function which
consists in a combination of a graded mesh near the singularity and a uniform mesh where the
solution is smooth. Such a choice gives rise to Toeplitz-like discretization matrices and thus
allows a low computational cost of the matrix–vector product and detailed spectral analysis.
The obtained spectral information is used to develop an ad-hoc parameter-free multigrid
preconditioner for GMRES, which is numerically shown to yield good convergence results
in presence of graded meshes mapped by power functions that accumulate points near the
singularity. The approximation order of the considered graded meshes is numerically compared
with the one of a certain composite mesh given in literature that still leads to Toeplitz-like
linear systems and is then still well-suited for our multigrid method. Several numerical tests
confirm that power-graded meshes result in lower approximation errors than composite ones
and that our solver has a wide range of applicability.

1. Introduction

We consider a conservative steady-state two-sided Fractional Diffusion Equation (FDE) of order 2 − 𝛽, 0 < 𝛽 < 1, with
inhomogeneous Dirichlet boundary-value conditions [1,2], i.e.,

⎧

⎪

⎨

⎪

⎩

− d
d𝑥

(

𝐾(𝑥)
(

𝛾01−𝛽
𝑥 + (1 − 𝛾) 𝑥

1−𝛽
1

)

)

𝑢(𝑥) = 𝑓 (𝑥), 0 < 𝑥 < 1,

𝑢(0) = 𝑢𝑙 , 𝑢(1) = 𝑢𝑟,
(1)

where 𝐾(𝑥) is a positive diffusion coefficient, 𝑓 (𝑥) is the source term, 𝑢𝑙 , 𝑢𝑟 are the Dirichlet boundary values and 0 ≤ 𝛾 ≤ 1
indicates the anisotropy in the diffusion, i.e., 𝛾 ≈ 0 and 𝛾 ≈ 1 imply a strong forward and backward diffusivity, respectively. By
0

1−𝛽
𝑥 ,𝑥

1−𝛽
1 we denote the left and right Caputo fractional derivatives (to be defined in the next section), while the fractional

derivative operators d
d𝑥 0

1−𝛽
𝑥 and d

d𝑥 𝑥
1−𝛽
1 are known as Riemann–Liouville–Caputo fractional derivatives [3] or as Patie–Simon

fractional derivatives [4–6].
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This kind of FDEs may exhibit singularities near the boundaries even in case of smooth coefficients; see, e.g., [7,8] where the
aputo derivative is in time or [9–11] where the fractional derivative is in space. As a consequence, non-uniform mesh-based
iscretization methods should be used. In this light, and due to the conservative nature of the problem, in [9] the authors propose
Finite Volume Element (FVE) discretization approach over a composite mesh made of a graded part and a uniform one.

In this paper, we adopt the FVE approach over a generic non-uniform mesh and we explicitly provide all the coefficients of the
esulting linear system. In particular, we focus on graded meshes mapped by power functions near the singularity. As for the case
f the composite mesh used in [9], also for meshes mapped by functions, the FVE discretization leads to structured linear systems
ith a Toeplitz-like pattern. Moreover, the regularity of the mapping function allows a spectral study of the coefficient matrices.
xtending the work done in [12] in presence of uniform meshes, here we perform a spectral analysis of the coefficient matrices
ombining the generating function of the Toeplitz part with the first derivative of the function that defines the graded mesh. We
se the retrieved information to design an ad-hoc multigrid preconditioner, which is parameter-free since the relaxing parameter of
he Jacobi smoother is estimated through the approach introduced in [13].

A wide number of numerical tests compares our proposal applied to both power-graded meshes and the composite mesh given
n [9] with the circulant preconditioner proposed therein. Concerning the parameter that defines the power mapping, we resort to
he results in [7], where the authors deal with a time-fractional diffusion equation, with Caputo derivative in time of order 𝛼 ∈ (0, 1),

discretized through an 𝐿1 approximation scheme. We numerically show that such a choice fits also within our setting and that the
resulting convergence order is similar to the one obtained in [7], while lower approximation errors are obtained with respect to the
composite meshes used in [9]. Finally, compared to the circulant preconditioner proposed in [9] for composite meshes, our solver
demonstrates linearly convergent over both graded and composite meshes.

The paper is organized as follows. In Section 2, we define the fractional derivative operators and recall a few results on Toeplitz
and generalized locally Toeplitz sequences. In Section 3, we provide the full FVE discretization over arbitrary meshes, then we focus
on meshes mapped by power functions, and in Section 4 we retrieve the spectral information of the involved discretization matrices.
Our multigrid proposal is discussed in Section 5 and numerically tested in Section 6. Finally, in Section 7 we draw conclusions.

2. Preliminaries

This section contains various preliminaries on fractional derivatives (Section 2.1) and Toeplitz matrices (Section 2.2) needed in
the rest of the paper. In Section 2.2, we also briefly introduce the Generalized Locally Toeplitz (GLT) theory which extends the
spectral results for symmetric Toeplitz matrices to more general cases.

2.1. Fractional derivatives

For a given function with absolutely integrable first derivative on [0, 1], the right-handed and left-handed Caputo fractional
derivatives of order 1 − 𝛽, 0 < 𝛽 < 1 are defined by

01−𝛽
𝑥 𝑔(𝑥) ∶= 1

𝛤 (𝛽) ∫

𝑥

0
(𝑥 − 𝑠)𝛽−1

d𝑔(𝑠)
d𝑠

d𝑠, 𝑥
1−𝛽
1 𝑔(𝑥) ∶= − 1

𝛤 (𝛽) ∫

1

𝑥
(𝑠 − 𝑥)𝛽−1

d𝑔(𝑠)
d𝑠

d𝑠,

ith 𝛤 (⋅) the Euler Gamma function. Another common definition of fractional derivatives that asks for less regularity on the function
s due to Riemann and Liouville

01−𝛽
𝑥 𝑔(𝑥) ∶= 1

𝛤 (𝛽)
d
d𝑠 ∫

𝑥

0
(𝑥 − 𝑠)𝛽−1𝑔(𝑠)d𝑠, 𝑥

1−𝛽
1 𝑔(𝑥) ∶= − 1

𝛤 (𝛽)
d
d𝑠 ∫

1

𝑥
(𝑠 − 𝑥)𝛽−1𝑔(𝑠)d𝑠.

n this case, it is enough that 𝑔 is absolutely continuous. The Riemann–Liouville derivatives relate to the Caputo ones as follows
see Equations (2.4.8)-(2.4.9) at page 91 of [14])

01−𝛽
𝑥 𝑔(𝑥) = 01−𝛽

𝑥 𝑔(𝑥) + 𝑥𝛽−1

𝛤 (𝛽)
𝑔(0), 𝑥

1−𝛽
1 𝑔(𝑥) = 𝑥

1−𝛽
1 𝑔(𝑥) +

(1 − 𝑥)𝛽−1

𝛤 (𝛽)
𝑔(1). (2)

herefore, in the case of homogeneous Dirichlet boundary conditions, the two definitions coincide.

.2. Toeplitz and generalized locally toeplitz sequences

In this subsection, we recall the definition of Toeplitz sequences generated by a function and we recall some key properties of
he GLT class which will be used in Section 4 to provide spectral information on the coefficient matrices resulting after a certain
on-uniform FVE discretization of Eq. (1).

efinition 2.1. A Toeplitz matrix 𝑇𝑁 ∈ C𝑁×𝑁 has constant coefficients along the diagonals, namely
[

𝑇𝑁
]

𝑖,𝑗 = 𝑡𝑖−𝑗 , 𝑖, 𝑗 = 1,… , 𝑁 . If
{𝑡𝑘}𝑘∈Z are the Fourier coefficients of a function 𝑓 ∈ 𝐿1([−𝜋, 𝜋]), i.e., 𝑡𝑘 = 1

2𝜋 ∫
2𝜋
0 𝑓 (𝜃)e−i𝑘𝜃d𝜃, the function 𝑓 is called the generating

function of {𝑇𝑁}𝑁 , and we write 𝑇𝑁 = 𝑇𝑁 (𝑓 ).

The GLT class is a matrix-sequence algebra obtained as a closure under some algebraic operations between Toeplitz and diagonal
matrix-sequences generated by functions (to be defined below). It includes matrix-sequences coming from the discretization of
differential operators with various techniques, such as finite differences, finite elements, Isogeometric Analysis, etc. The formal
definition of GLT class is difficult and involves a heavy notation, therefore in the following, we just introduce those among its
properties that we need for our studies (for a more detailed discussion see [15]).
2
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Definition 2.2. A matrix-sequence whose 𝑁th element is a diagonal matrix 𝐷𝑁 = [𝑑𝑖,𝑗 ]𝑁𝑖,𝑗=1 ∈ R𝑁×𝑁 such that 𝑑𝑖,𝑖 = 𝑑
(

𝑖
𝑁

)

, 𝑖 =
1,… , 𝑁 , with 𝑑 ∶ [0, 1] → C a Riemann-integrable function, is called diagonal sampling sequence.

The functions 𝑓 in Definition 2.1 and 𝑑 in Definition 2.2 allow to estimate the spectrum of the matrix-sequences {𝑇𝑁 (𝑓 )}𝑁 and
{𝐷𝑁}, respectively, in the following sense.

Definition 2.3. Let 𝑓 ∶ 𝐺 → C be a measurable function, defined on a measurable set 𝐺 ⊂ R𝑘 with 𝑘 ≥ 1, 0 < 𝑚𝑘(𝐺) < ∞, where
𝑚𝑘(𝐺) is the Lebesgue measure of the set 𝐺. Let 𝐶0(K) be the set of continuous functions with compact support over K ∈ {R+

0 ,C}
and let {𝐴𝑁}𝑁 be a sequence of matrices of size 𝑁 with eigenvalues 𝜆𝑗 (𝐴𝑁 ), 𝑗 = 1,… , 𝑁 and singular values 𝜎𝑗 (𝐴𝑁 ), 𝑗 = 1,… , 𝑁 .

• {𝐴𝑁}𝑁 is distributed as the pair (𝑓,𝐺) in the sense of the eigenvalues, in formulae {𝐴𝑁}𝑁 ∼𝜆 (𝑓,𝐺), if the following limit
relation holds for all 𝐹 ∈𝐶0(C)

lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝐹 (𝜆𝑗 (𝐴𝑁 )) = 1

𝑚𝑘(𝐺) ∫𝐺
𝐹 (𝑓 (𝑡))d𝑡. (3)

In this case, we refer to the function 𝑓 as (spectral) symbol.
• {𝐴𝑁}𝑁 is distributed as the pair (𝑓,𝐺) in the sense of the singular values, in formulae {𝐴𝑁}𝑁 ∼𝜎 (𝑓,𝐺), if the following limit

relation holds for all 𝐹 ∈𝐶0(R+
0 )

lim
𝑁→∞

1
𝑁

𝑁
∑

𝑗=1
𝐹 (𝜎𝑗 (𝐴𝑁 )) = 1

𝑚𝑘(𝐺) ∫𝐺
𝐹 (|𝑓 (𝑡)|)d𝑡. (4)

In this case, we refer to the function 𝑓 as singular value symbol.

Remark 2.4. An informal interpretation of the limit relation (3) (resp. (4)) is that when 𝑁 is sufficiently large, the eigenvalues
(resp. singular values) of 𝐴𝑁 can be approximated by a sampling of 𝑓 (resp. |𝑓 |) on a uniform mesh over the set 𝐺, up to a relatively
small number of potential outliers and where ‘‘relatively small’’ means 𝑜(𝑁).

Throughout, we use the following notation

{𝐴𝑁}𝑁 ∼𝐺𝐿𝑇 𝜓(𝑥, 𝜃), (𝑥, 𝜃) ∈ [0, 1] × [−𝜋, 𝜋],

o say that the sequence {𝐴𝑁}𝑁 is a GLT sequence with symbol 𝜓(𝑥, 𝜃).
Here we report five main features of the GLT class.

LT1 Let {𝐴𝑁}𝑁 ∼GLT 𝜓(𝑥, 𝜃) with 𝜓 ∶ 𝐺 → C, 𝐺 = [0, 1] × [−𝜋, 𝜋], then {𝐴𝑁}𝑁 ∼𝜎 (𝜓,𝐺). If the matrices 𝐴𝑁 are Hermitian, then
{𝐴𝑁}𝑁 ∼𝜆 (𝜓,𝐺).

LT2 The set of GLT sequences forms a ∗-algebra, i.e., it is closed under linear combinations, products, and transposed conjugation.
Moreover, it is closed under inversion whenever the symbol vanishes, at most, in a set of zero Lebesgue measure. Hence, the
sequence obtained via algebraic operations on a finite set of input GLT sequences is still a GLT sequence and its symbol is
obtained by following the same algebraic manipulations on the corresponding symbols of the input GLT sequences.

LT3 Every Toeplitz sequence {𝑇𝑁 (𝑓 )}𝑁 generated by a 𝐿1([−𝜋, 𝜋]) function 𝑓 (𝜃) is such that {𝑇𝑁 (𝑓 )}𝑁 ∼GLT 𝑓 (𝜃), with the
specifications reported in item GLT1. Every diagonal sampling sequence {𝐷𝑁 (𝑎)}𝑁 , where 𝑎(𝑥) is a Riemann integrable
function in [0,1], is such that {𝐷𝑁 (𝑎)}𝑁 ∼GLT 𝑎(𝑥).

LT4 Every sequence distributed as the constant zero in the singular value sense is a GLT sequence with a zero symbol and
vice-versa. In formulae, {𝐴𝑁}𝑁 ∼𝜎 (0, 𝐺), 𝐺 = [0, 1] × [−𝜋, 𝜋], if and only if {𝐴𝑁}𝑁 ∼GLT 0.

LT5 Let {𝐴𝑁}𝑁 ∼GLT 𝜓(𝑥, 𝜃), 𝐺 = [0, 1] × [−𝜋, 𝜋]. If we assume that

lim𝑁→∞

‖

‖

‖

𝐴𝑁 − 𝐴H
𝑁
‖

‖

‖tr
𝑁

= 0,

where ‖⋅‖tr is the trace norm, i.e., the sum of the singular values, then 𝜓(𝑥, 𝜃) is necessarily a real-valued function and
{𝐴𝑁}𝑁 ∼𝜆 𝜓(𝑥, 𝜃).

The first GLT result that we need in the next sections is reported in Proposition 2.5 and concerns the symbol of a diagonal-times-
Toeplitz matrix-sequence.

Proposition 2.5 ([15]). Let {𝐷𝑁}𝑁 be a sequence of diagonal sampling matrices with symbol 𝑑 ∶ [0, 1] → R>0 , and {𝑇𝑁 (𝑓 )}𝑁 be a
sequence of Hermitian Toeplitz matrices with symbol 𝑓 ∶ [−𝜋, 𝜋] → R, then

{𝐷 𝑇 (𝑓 )} ∼
(

𝑑(𝑥)𝑓 (𝜃), [0, 1] × [−𝜋, 𝜋]
)

.

3

𝑁 𝑁 𝑁 𝜆
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Notice that Proposition 2.5 is a consequence of the similitude transformation 𝐷
− 1

2
𝑁 𝐷𝑁𝑇𝑁 (𝑓 )𝐷

1
2
𝑁 = 𝐷

1
2
𝑁𝑇𝑁 (𝑓 )𝐷

1
2
𝑁 and of the

hermitianity of 𝐷
1
2
𝑁𝑇𝑁 (𝑓 )𝐷

1
2
𝑁 which, from GLT1-3, ensure

{𝐷
1
2
𝑁𝑇𝑁 (𝑓 )𝐷

1
2
𝑁}𝑁 ∼𝜆

(
√

𝑑(𝑥)𝑓 (𝜃)
√

𝑑(𝑥) = 𝑑(𝑥)𝑓 (𝜃), [0, 1] × [−𝜋, 𝜋]
)

.

In case the diagonal-times-Toeplitz structure is hidden, one can resort to the notion of approximating class of sequences and to
the GLT result reported in Theorem 2.7, which allows finding the symbol of a ‘difficult’ matrix-sequence by means of ‘simpler’
matrix-sequences.

Definition 2.6. Let {𝐴𝑁}𝑁 be a matrix-sequence and let {{𝐵𝑁,𝑀}𝑁}𝑀 be a sequence of matrix-sequences. We say that {{𝐵𝑁,𝑀}𝑁}𝑀
is an approximating class of sequences (a.c.s.) for {𝐴𝑁}𝑁 if the following condition is met: ∀𝑀 ∃ 𝑁𝑀 such that for 𝑁 ≥ 𝑁𝑀 ,

𝐴𝑁 = 𝐵𝑁,𝑀 + 𝑅𝑁,𝑀 +𝑁𝑁,𝑀 , rank(𝑅𝑁,𝑀 ) ≤ 𝑐(𝑀)𝑁, ‖

‖

𝑁𝑁,𝑀
‖

‖2 ≤ 𝜔(𝑀),

here ‖⋅‖2 is the spectral norm and 𝑁𝑀 , 𝑐(𝑀), 𝜔(𝑀) depend only on 𝑀 with

lim
𝑀→∞

𝑐(𝑀) = lim
𝑀→∞

𝜔(𝑀) = 0.

Theorem 2.7 ([15]). Let {𝐴𝑁}𝑁 be a matrix-sequence. If there exists an a.c.s. {{𝐵𝑁,𝑀}𝑁}𝑀 for {𝐴𝑁}𝑁 such that {{𝐵𝑁,𝑀}𝑁}𝑀 ∼𝜎
𝑓𝑁,𝑀 , 𝐺), with 𝑓𝑁,𝑀 that converges in measure to 𝑓 , then

{𝐴𝑁}𝑁 ∼𝜎 (𝑓,𝐺).

. Finite volume elements scheme

The FVE approach consists in restricting the admissible solutions 𝑢(𝑥) of the FDE in (1) to a certain finite element space,
artitioning the definition interval [0, 1] as ∪𝑛𝑖=1𝛺𝑖, where 𝜇(𝛺𝑖 ∩𝛺𝑗 )=0, 𝑖≠𝑗, with 𝜇 the Lebesgue measure, and finally integrating
q. (1) over 𝛺𝑖. In our specific case, we consider the unknown 𝑢(𝑥) to belong to the space of the piecewise linear polynomial
unctions. In the following, we provide a full discretization over a generic non-structured mesh (Section 3.1), then we consider the
pecial case of a uniform mesh (Section 3.2) and make a comparison with the discretization in [12]. Finally, in Section 3.3, we focus
n two non-uniform structured meshes, obtained as a combination of a non-uniform part and a uniform one.

.1. Generic non-uniform mesh

Let 𝑁 ∈ N and denote by {𝑥𝑖}𝑁+1
𝑖=0 a generic mesh on [0, 1], such that 𝑥𝑖 > 𝑥𝑖−1, ∀𝑖 = 1,… , 𝑁 + 1 with 𝑥0 = 0, 𝑥𝑁+1 = 1, then

efine

𝑢̃(𝑥) =
𝑁
∑

𝑖=1
𝑢𝑖𝜙𝑖(𝑥) + 𝑢𝑙𝜙0(𝑥) + 𝑢𝑟𝜙𝑁+1(𝑥),

here {𝜙𝑖}𝑁+1
𝑖=0 is the set of hat (linear) functions with

𝜙𝑖(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥−𝑥𝑖−1
ℎ𝑖

, 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖)
𝑥𝑖+1−𝑥
ℎ𝑖+1

, 𝑥 ∈ (𝑥𝑖, 𝑥𝑖+1)

0, otherwise

for 𝑖 = 1,… , 𝑁,

nd

𝜙0(𝑥) =

{ 𝑥1−𝑥
ℎ1

, 𝑥 ∈ (𝑥0, 𝑥1)

0, otherwise,
𝜙𝑁+1(𝑥) =

{ 𝑥−𝑥𝑁
ℎ𝑁+1

, 𝑥 ∈ (𝑥𝑁 , 𝑥𝑁+1)

0, otherwise,

where ℎ𝑖 = 𝑥𝑖−𝑥𝑖−1, 𝑖 = 1,… , 𝑁+1 is the step length. Replacing 𝑢(𝑥) with 𝑢̃(𝑥) in equation (1) and integrating over 𝛺𝑖 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
],

here 𝑥𝑖− 1
2
= 𝑥𝑖+𝑥𝑖−1

2 , Eq. (1) can be written as the linear system

𝐴𝑁𝑢 = 𝑏, (5)

where 𝑏 ∈ R𝑁 and 𝐴𝑁 ∈ R𝑁×𝑁 , with

𝑎𝑖,𝑗 = −𝐾(𝑥)
(

𝛾01−𝛽
𝑥 + (1 − 𝛾)𝑥

1−𝛽
1

)

𝜙𝑗 (𝑥)
|

|

|

𝑥=𝑥
𝑖+ 1

2
𝑥=𝑥

𝑖− 1
2

,

𝑏𝑖 = ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑓 (𝑥)d𝑥 +𝐾(𝑥)
(

𝛾01−𝛽
𝑥 + (1 − 𝛾)𝑥

1−𝛽
1

)

(𝑢𝑙𝜙0(𝑥) + 𝑢𝑟𝜙𝑁+1(𝑥))
|

|

|

𝑥=𝑥
𝑖+ 1

2
𝑥=𝑥

𝑖− 1
2

,

4
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for 𝑖, 𝑗 = 1,… , 𝑁 . Explicitly, let 𝐾𝑖 = 𝐾(𝑥𝑖) and 𝑓𝑖 = 𝑓 (𝑥𝑖), then the entries of 𝑏 are

𝑏1 =𝑓1
ℎ1 + ℎ2

2
+

𝐾 3
2

𝛤 (𝛽 + 1)

[ 𝑢𝐿𝛾
ℎ1

(

(𝑥 3
2
− 𝑥1)𝛽 − 𝑥

𝛽
3
2

)

+
𝑢𝑅(1 − 𝛾)
ℎ𝑁+1

(

(1 − 𝑥 3
2
)𝛽 − (𝑥𝑁 − 𝑥 3

2
)𝛽
)

]

+

−
𝐾 1

2

𝛤 (𝛽 + 1)

[

−
𝑢𝐿𝛾
ℎ1

𝑥𝛽1
2

+ (1 − 𝛾)
(

−
𝑢𝐿
ℎ1

(𝑥1 − 𝑥 1
2
)𝛽 +

𝑢𝑅
ℎ𝑁+1

(

(1 − 𝑥 1
2
)𝛽 − (𝑥𝑁 − 𝑥 1

2
)𝛽
))

]

,

𝑏𝑖 =𝑓𝑖
ℎ𝑖 + ℎ𝑖+1

2
+

𝐾𝑖+ 1
2

𝛤 (𝛽 + 1)

[ 𝑢𝐿𝛾
ℎ1

(

(𝑥𝑖+ 1
2
− 𝑥1)𝛽 − 𝑥

𝛽
𝑖+ 1

2

)

+
𝑢𝑅(1 − 𝛾)
ℎ𝑁+1

(

(1 − 𝑥𝑖+ 1
2
)𝛽 − (𝑥𝑁 − 𝑥𝑖+ 1

2
)𝛽
)

]

+

−
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)

[ 𝑢𝐿𝛾
ℎ1

(

(𝑥𝑖− 1
2
− 𝑥1)𝛽 − 𝑥

𝛽
𝑖− 1

2

)

+
𝑢𝑅(1 − 𝛾)
ℎ𝑁+1

(

(1 − 𝑥𝑖− 1
2
)𝛽 − (𝑥𝑁 − 𝑥𝑖− 1

2
)𝛽
)

]

,

for 𝑖 = 2,… , 𝑁 − 1, and

𝑏𝑁 =𝑓𝑁
ℎ𝑁 + ℎ𝑁+1

2
+

𝐾𝑁+ 1
2

𝛤 (𝛽 + 1)

[ 𝑢𝐿𝛾
ℎ1

(

(𝑥𝑁+ 1
2
− 𝑥1)𝛽 − 𝑥

𝛽
𝑁+ 1

2

)

+
𝑢𝑅𝛾
ℎ𝑁+1

(𝑥𝑁+ 1
2
− 𝑥𝑁 )𝛽 +

𝑢𝑅(1 − 𝛾)
ℎ𝑁+1

(1 − 𝑥𝑁+ 1
2
)𝛽
]

+

−
𝐾𝑁− 1

2

𝛤 (𝛽 + 1)

[ 𝑢𝐿𝛾
ℎ1

(

(𝑥𝑁− 1
2
− 𝑥1)𝛽 − 𝑥

𝛽
𝑁− 1

2

)

+
𝑢𝑅(1 − 𝛾)
ℎ𝑁+1

(

(1 − 𝑥𝑁− 1
2
)𝛽 − (𝑥𝑁 − 𝑥𝑁− 1

2
)𝛽
)

]

.

The entries of 𝐴𝑁 , for 𝑖 = 1,… , 𝑁 , are

𝑎𝑖,𝑖−𝑘 =
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)
𝛾
⎡

⎢

⎢

⎣

( ℎ𝑖2 +
∑𝑘
𝑗=1 ℎ𝑖−𝑗 )

𝛽 − ( ℎ𝑖2 +
∑𝑘−1
𝑗=1 ℎ𝑖−𝑗 )

𝛽

ℎ𝑖−𝑘
+

( ℎ𝑖2 +
∑𝑘−2
𝑗=1 ℎ𝑖−𝑗 )

𝛽 − ( ℎ𝑖2 +
∑𝑘−1
𝑗=1 ℎ𝑖−𝑗 )

𝛽

ℎ𝑖−𝑘+1

⎤

⎥

⎥

⎦

+

−
𝐾𝑖+ 1

2

𝛤 (𝛽 + 1)
𝛾
⎡

⎢

⎢

⎣

( ℎ𝑖+12 +
∑𝑘
𝑗=0 ℎ𝑖−𝑗 )

𝛽 − ( ℎ𝑖+12 +
∑𝑘−1
𝑗=0 ℎ𝑖−𝑗 )

𝛽

ℎ𝑖−𝑘
+

( ℎ𝑖+12 +
∑𝑘−2
𝑗=0 ℎ𝑖−𝑗 )

𝛽 − ( ℎ𝑖+12 +
∑𝑘−1
𝑗=0 ℎ𝑖−𝑗 )

𝛽

ℎ𝑖−𝑘+1

⎤

⎥

⎥

⎦

,

for 2 ≤ 𝑘 ≤ 𝑖 − 1, and

𝑎𝑖,𝑖−1 =
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)

⎡

⎢

⎢

⎣

𝛾
(ℎ𝑖−1 +

ℎ𝑖
2 )

𝛽 − ( ℎ𝑖2 )
𝛽

ℎ𝑖−1
−

( ℎ𝑖2 )
𝛽

ℎ𝑖

⎤

⎥

⎥

⎦

+

−
𝐾𝑖+ 1

2

𝛤 (𝛽 + 1)
𝛾
⎡

⎢

⎢

⎣

(ℎ𝑖−1 + ℎ𝑖 +
ℎ𝑖+1
2 )𝛽 − (ℎ𝑖 +

ℎ𝑖+1
2 )𝛽

ℎ𝑖−1
+

( ℎ𝑖+12 )𝛽 − (ℎ𝑖 +
ℎ𝑖+1
2 )𝛽

ℎ𝑖

⎤

⎥

⎥

⎦

;

𝑎𝑖,𝑖 =
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)

⎡

⎢

⎢

⎣

( ℎ𝑖2 )
𝛽

ℎ𝑖
+ (1 − 𝛾)

( ℎ𝑖2 )
𝛽 − (ℎ𝑖+1 +

ℎ𝑖
2 )

𝛽

ℎ𝑖+1

⎤

⎥

⎥

⎦

−
𝐾𝑖+ 1

2

𝛤 (𝛽 + 1)

⎡

⎢

⎢

⎣

𝛾
(ℎ𝑖 +

ℎ𝑖+1
2 )𝛽 − ( ℎ𝑖+12 )𝛽

ℎ𝑖
−

( ℎ𝑖+12 )𝛽

ℎ𝑖+1

⎤

⎥

⎥

⎦

;

𝑎𝑖,𝑖+1 =
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)
(1 − 𝛾)

⎡

⎢

⎢

⎣

(ℎ𝑖+1 +
ℎ𝑖
2 )

𝛽 − ( ℎ𝑖2 )
𝛽

ℎ𝑖+1
+

(ℎ𝑖+1 +
ℎ𝑖
2 )

𝛽 − (ℎ𝑖+2 + ℎ𝑖+1 +
ℎ𝑖
2 )

𝛽

ℎ𝑖+2

⎤

⎥

⎥

⎦

+

−
𝐾𝑖+ 1

2

𝛤 (𝛽 + 1)

⎡

⎢

⎢

⎣

( ℎ𝑖+12 )𝛽

ℎ𝑖+1
+ (1 − 𝛾)

( ℎ𝑖+12 )𝛽 − (ℎ𝑖+2 +
ℎ𝑖+1
2 )𝛽

ℎ𝑖+2

⎤

⎥

⎥

⎦

,

and finally,

𝑎𝑖,𝑖+𝑘 =
𝐾𝑖− 1

2

𝛤 (𝛽 + 1)
(1 − 𝛾)

⎡

⎢

⎢

⎣

( ℎ𝑖2 +
∑𝑘
𝑗=1 ℎ𝑖+𝑗 )

𝛽 − ( ℎ𝑖2 +
∑𝑘−1
𝑗=1 ℎ𝑖+𝑗 )

𝛽

ℎ𝑖+𝑘
+

( ℎ𝑖2 +
∑𝑘
𝑗=1 ℎ𝑖+𝑗 )

𝛽 − ( ℎ𝑖2 +
∑𝑘+1
𝑗=1 ℎ𝑖+𝑗 )

𝛽

ℎ𝑖+𝑘+1

⎤

⎥

⎥

⎦

+

−
𝐾𝑖+ 1

2

𝛤 (𝛽 + 1)
(1 − 𝛾)

⎡

⎢

⎢

⎣

( ℎ𝑖+12 +
∑𝑘
𝑗=2 ℎ𝑖+𝑗 )

𝛽 − ( ℎ𝑖+12 +
∑𝑘−1
𝑗=2 ℎ𝑖+𝑗 )

𝛽

ℎ𝑖+𝑘
+

( ℎ𝑖+12 +
∑𝑘
𝑗=2 ℎ𝑖+𝑗 )

𝛽 − ( ℎ𝑖+12 +
∑𝑘+1
𝑗=2 ℎ𝑖+𝑗 )

𝛽

ℎ𝑖+𝑘+1

⎤

⎥

⎥

⎦

,

for 2 ≤ 𝑘 ≤ 𝑁 − 𝑖.

emark 3.1. Let us consider 𝐾(𝑥) = 1. When 𝛽 = 0, we have 𝑎𝑖,𝑖−𝑘 = 𝑎𝑖,𝑖+𝑘 = 0,∀𝑘 ≥ 2 and the dense structure of 𝐴𝑁 collapses
into the tridiagonal matrix representing the 1D discrete Laplacian operator, which does not depend on 𝛾 anymore. On the contrary,

hen 𝛽 = 1 we still have 𝑎 = 𝑎 = 0,∀𝑘 ≥ 2 independently of 𝛾 and 𝐴 becomes a skew-symmetric matrix.
5

𝑖,𝑖−𝑘 𝑖,𝑖+𝑘 𝑁
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3.2. Uniform mesh

Under the conditions

𝐾(𝑥) = 𝐾, 𝛾 = 1
2
, ℎ𝑖 = ℎ = 1

𝑁 + 1
, 𝑖 = 1,… , 𝑁 + 1, (6)

ith 𝑐 = 𝐾ℎ𝛽−1

2𝛽𝛤 (𝛽+1) , it holds

𝑎𝑖,𝑖−𝑘 =
𝑐
2
[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

, 2 ≤ 𝑘 ≤ 𝑖 − 1;

𝑎𝑖,𝑖−1 =
𝑐
2
[

3𝛽+1 − 4 − 5𝛽
]

;

𝑎𝑖,𝑖 =
𝑐
2
[

6 − 2 ⋅ 3𝛽
]

;

𝑎𝑖,𝑖+1 =
𝑐
2
[

3𝛽+1 − 4 − 5𝛽
]

;

𝑎𝑖,𝑖+𝑘 =
𝑐
2
[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

, 2 ≤ 𝑘 ≤ 𝑁 − 𝑖.

(7)

herefore, under the assumptions in Eq. (6), matrix 𝐴𝑁 in (5) is a symmetric Toeplitz matrix and coincides with the coefficient
atrix considered in [16], where the authors consider a FVE discretization of (1) with Riemann–Liouville fractional derivative

perators in place of Caputo’s. This is indeed not surprising since, from (2) and by 𝜙𝑖(0) = 𝜙𝑖(1) = 0, ∀𝑖 = 1,… , 𝑁 , we have

01−𝛽
𝑥 𝜙𝑖(𝑥) = 01−𝛽

𝑥 𝜙𝑖(𝑥),

𝑥
1−𝛽
1 𝜙𝑖(𝑥) = 𝑥

1−𝛽
1 𝜙𝑖(𝑥),

which means that the only difference between the FVE discretization of Eq. (1) on uniform meshes and the discretized equation
in [16] lies in the right-hand side.

3.3. Graded and composite meshes

The discretization of Eq. (1) over uniform meshes yields matrices with a Toeplitz structure, which allows fast matrix–vector
product in O(𝑁 log𝑁), while in case of a generic non-uniform mesh discretization the Toeplitz structure is lost. On the other hand, the
solution of the FDE in (1) may exhibit singularities near the boundaries, therefore uniform grids should be avoided and non-uniform
meshes should be preferred.

In order to deal with the singularity and at the same time to do not completely lose the structure of the coefficient matrices,
in the following we consider two mixed approaches of graded mesh near the singularity and a uniform mesh where the solution is
smooth. This yields matrices with a partial Toeplitz structure that can be exploited to allow a fast matrix–vector product. For the
sake of simplicity, in the following we only consider singularities at 𝑥 = 0, however, the approach can be straightforwardly extended
to the case of singularities at 𝑥 = 1 or at both boundaries.

Graded meshes. Let 𝑁 ∈ N and consider the uniform grid {𝑥̂𝑖}𝑁+1
𝑖=0 with 𝑥̂𝑖 = 𝑖ℎ, 𝑖 = 0,… , 𝑁 + 1, and ℎ = 1

𝑁+1 , then

{𝑥𝑖}𝑁+1
𝑖=0 , 𝑥𝑖 = 𝑔(𝑥̂𝑖), (8)

s the non-uniform grid generated by projection of the uniform mesh {𝑥̂𝑖}𝑁+1
𝑖=0 through the endomorphism 𝑔(𝑥) ∶ [0, 1] → [0, 1]. We

consider endomorphisms of the form

𝑔𝑞,𝝐(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥𝑞 , 0 ≤ 𝑥 ≤ 𝜖1,
𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝜖1 ≤ 𝑥 ≤ 𝜖1 + 𝜖2,
𝑚𝑥 + 𝑝, 𝜖1 + 𝜖2 ≤ 𝑥 ≤ 1,

(9)

with 𝝐 = (𝜖1, 𝜖2), 0 < 𝜖1 + 𝜖2 ≤ 1, 𝜖2 > 0, and 𝑎, 𝑏, 𝑐, 𝑚, 𝑝 such that 𝑔𝑞,𝝐 ∈ C1([0, 1]). Proposition 3.2, proved in Appendix A, shows that
𝑞,𝝐(𝑥) is well-defined, i.e., given 𝑞, 𝜖1, 𝜖2 there exist unique 𝑎, 𝑏, 𝑐, 𝑚, 𝑝 such that 𝑔𝑞,𝝐 ∈ C1([0, 1]).

roposition 3.2. Let 𝑔𝑞,𝝐(𝑥) be as in (9), with 𝝐 = (𝜖1, 𝜖2). Then, for 0 < 𝜖1 + 𝜖2 ≤ 1 with 𝜖2 > 0, function 𝑔𝑞,𝝐(𝑥) is well-defined.

Note that in the case where 𝜖2 = 0, the interval [𝜖1, 𝜖1 + 𝜖2] = {𝜖1} and the quadratic function in (9) disappears, leading to a loss
n smoothness of 𝑔𝑞,𝜖 . Indeed, the function 𝑔𝑞,𝜖 has been defined such that in [0, 𝜖1] accumulates grid points near the singularity at
he origin, in [𝜖1 + 𝜖2, 1] gives a uniform mesh, and in [𝜖1, 𝜖1 + 𝜖2] is a quadratic function that acts as a smooth connection of length
2 between the singular part and the uniform mesh, with the only purpose to increase the smoothness of the whole function 𝑔𝑞,𝝐 .
herefore, it is clear that 𝜖1 + 𝜖2 represents the length of the non-uniform part of the grid over the interval [0, 1].

When 𝝐 is fixed, the only free parameter of 𝑔𝑞,𝜖 is 𝑞 which we choose to be

𝑞 = 𝑞𝛽 =
1 + 𝛽

, (10)
6

1 − 𝛽
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as done in [7], where a Caputo time-fractional derivative is involved and a 𝐿1 approximation is considered. Therein the authors
roved the convergence order to be 1+ 𝛽 over quasi-graded meshes, which are meshes asymptotically close to graded ones mapped
y 𝑔𝑞,𝝐(𝑥) with 𝝐 = (1, 0).

When 𝑁 is large, 𝑔𝑞,𝝐(𝑥) could map a grid that has too short intervals, i.e, ℎ1 = 𝑔𝑞,𝜖(𝑥̂1) ≪ 10−16. Therefore we replace 𝑞𝛽 with
= log(10−16)

− log(𝑁+1) such that

ℎ1 = 10−16. (11)

Composite mesh. For our numerical comparisons, we will consider also the composite mesh used in [9], which has been proven to
be effective in the case where 𝛽 ≈ 1. Let 𝑁1, 𝑁2 ∈ N and consider an uniform mesh with step ℎ = 1

𝑁2+1
.

Then we divide the interval [0, ℎ] into 𝑁1 + 1 subintervals, whose lengths from left to right are ℎ𝑖, 𝑖 = 1,… , 𝑁1+1 with
{

ℎ𝑖 = 2−𝑁1ℎ, if 𝑖 = 1;
ℎ𝑖 = 2𝑖−2−𝑁1ℎ, if 𝑖 = 2,… , 𝑁1+1.

Therefore, the grid points are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑖 = 0, if 𝑖 = 0
𝑥𝑖 = 2𝑖−1−𝑁1ℎ, if 𝑖 = 1,… , 𝑁1;
𝑥𝑖+𝑁1

= 𝑖ℎ, if 𝑖 = 1,… , 𝑁2;
𝑥𝑖 = 1, if 𝑖 = 𝑁1 +𝑁2 + 1.

(12)

We fix 𝑁 ∈ N and then we choose

𝑁1 = 𝑔𝐺(𝑁) and 𝑁2 = 𝑁 −𝑁1, (13)

such that the total amount of grid points is 𝑁 , where 𝑔𝐺(𝑁) ∶ N → N, e.g., 𝑔𝐺(𝑁) = ⌊

√

𝑁⌋ or 𝑔𝐺(𝑁) = ⌊log2𝑁⌋, with ⌊⋅⌋ being the
floor function.

Note that in [9] the authors consider ℎ = 1
𝑁2

, leading to coefficient matrices of size 𝑁 − 1, and they also first fix 𝑁2 and then
choose 𝑁1 ≈

√

𝑁2. Our choices are needed to have matrices of size 𝑁 as with graded meshes and hence to provide a meaningful
omparison between the two approaches.

. Spectral properties of the coefficient matrices

In this section, we first recall the spectral symbol of the coefficient matrices 𝐴𝑁 in presence of uniform meshes already given
n [12]. Then, following the idea in [15] (p. 212, section 10.5.4), we compute the symbol of the coefficient matrices when considering
on-uniform grids mapped by functions. In both cases, we fix 𝛾 = 1

2 .
In case of uniform meshes, from Eq. (7), we have that 𝐴𝑁 = 𝑐𝑇𝑁 (𝑝𝛽𝑁 (𝜃)) where 𝑐 = 𝐾ℎ𝛽−1

2𝛽𝛤 (𝛽+1) and

𝑝𝛽𝑁 (𝜃) = 1
𝑐
𝑎1,1 +

2
𝑐

𝑁−1
∑

𝑘=1
𝑎1,𝑘+1 cos(𝑘𝜃), (14)

with 𝑎1,𝑘 in Eq. (7). The scaling 1
𝑐 in 𝑝𝛽𝑁 (𝜃) is considered in order to directly deduce the following proposition from Proposition 3.15

in [12].

Proposition 4.1 ([12]). For 𝑁 → ∞, 𝑝𝛽𝑁 (𝜃) in (14) converges to a positive real-valued even function, say 𝑝𝛽 (𝜃), that has a unique zero at
𝜃 = 0 of order lower than 2, for every 𝛽 ∈ (0, 1) and such that

{ℎ1−𝛽𝐴𝑁}𝑁 ∼𝜆

(

𝐾
2𝛽𝛤 (𝛽 + 1)

𝑝𝛽 (𝜃), [−𝜋, 𝜋]
)

.

In case of non-uniform meshes as in Eq. (8), the following theorem, proved in Appendix B, holds.

Theorem 4.2. Let 𝐾(𝑥) = 𝐾 and suppose 𝑔 ∶ [0, 1] → [0, 1] is an increasing bijective map in 𝐶3([0, 1]). Then, if 𝑔′(𝑥) has a finite amount
f zeros of limited order, it holds

{ℎ1−𝛽𝐴𝑁}𝑁 ∼𝜎
(

𝑓𝛽 (𝑥, 𝜃), [0, 1] × [−𝜋, 𝜋]
)

, (15)

ith

𝑓𝛽 (𝑥, 𝜃) =
𝐾

2𝛽𝛤 (𝛽 + 1)(𝑔′(𝑥))1−𝛽
𝑝𝛽 (𝜃). (16)

Theorem 4.3 extends the result obtained in Theorem 4.2 to the distribution in the sense of the eigenvalues.
7
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Fig. 1. Plot of the sequence 𝑠(𝑁) varying 𝑁 for different combinations of 𝛽 and 𝑞.

heorem 4.3. Let 𝐾(𝑥) = 𝐾 and suppose 𝑔 ∶ [0, 1] → [0, 1] is an increasing bijective map in 𝐶3([0, 1]). Then, if 𝑔′(𝑥) > 0, it holds

{ℎ1−𝛽𝐴𝑁}𝑁 ∼𝜆
(

𝑓𝛽 (𝑥, 𝜃), [0, 1] × [−𝜋, 𝜋]
)

, (17)

ith 𝑓𝛽 (𝑥, 𝜃) defined as in (16).

emark 4.4. Combining Theorem 4.3 and Proposition 4.1, we have that the symbol 𝑓𝛽 (𝑥, 𝜃) of {ℎ1−𝛽𝐴𝑁}𝑁 has a unique zero at
𝜃 = 0 of order lower than 2.

The constraint 𝑔′(𝑥) > 0 is taken to facilitate the proof as, under this hypothesis, we could show that GLT5 holds; see Appendix C
for more details on the proof of Theorem 4.3. Despite the need of this assumption to accomplish the proof, a numerical check
indicates that GLT5 still holds when 𝑔(𝑥) = 𝑥𝑞 , as long as

1 < 𝑞 <
2 − 𝛽
1 − 𝛽

. (18)

A confirmation is given in Fig. 1 where, fixed 𝐾(𝑥) = 1, 𝛾 = 0.5, and 𝑔(𝑥) = 𝑥𝑞 , with 𝑞 = 𝑞1, 𝑞2 such that 𝑞1 <
2−𝛽
1−𝛽 < 𝑞2, we plot the

sequence

𝑠(𝑁) =
ℎ1−𝛽 ‖‖

‖

𝐴𝑁 − 𝐴H
𝑁
‖

‖

‖tr
𝑁

,

varying 𝑁 ∈ [24, 210] and 𝛽. When 𝑞 = 𝑞1 (resp. 𝑞 = 𝑞2), the sequence 𝑠(𝑁) shows a monotonically decreasing (resp. increasing)
haracter, which confirms that GLT5 still holds when (18) is satisfied. Further evidence is given in Fig. 2 where we plot the sign of
(24)−𝑠(25) varying both 𝛽 and 𝑞. At each coordinate (𝛽, 𝑞) the blue dot means that 𝑠(24)−𝑠(25) > 0 while the yellow dot corresponds
o 𝑠(24)−𝑠(25) < 0. If, in line with the results in Fig. 1, we assume that 𝑠(𝑁) is monotonic, the blue and yellow areas roughly indicate
or which pairs (𝛽, 𝑞) the sequence 𝑠(𝑁) converges or diverges. Note that the curve 2−𝛽

1−𝛽 , depicted in red, delimits the two regions.
When 𝛽 ≈ 0.9 the red curve does not properly overlap the blue dots and this could be due to the large values of 𝑞, which lead to
highly ill-conditioned linear systems even with small 𝑁 .

A further check confirms that Theorem 4.3 seems to hold even when (18) is not satisfied and GLT5 does not hold. Fixed 𝑁 = 26

nd 𝛽 = 0.5, Figs. 3(a) and 3(b) compare the sorted eigenvalues of ℎ1−𝛽𝐴𝑁 with the sorted uniform sampling of the symbol 𝑓𝛽 (𝑥, 𝜃)
ver the meshes mapped by 𝑔(𝑥) = 𝑥𝑞 , 𝑞 = 2, 4 from both

(i) {𝑥̂𝑖, 𝜃𝑗}
√

𝑁
𝑖,𝑗=1 with 𝑥̂𝑖 = 𝑖 1

√

𝑁
, 𝜃𝑗 = 𝑗 𝜋

√

𝑁+1
,

(ii) {𝑥̂𝑖, 𝜃𝑗}𝑁
2

𝑖,𝑗=1 with 𝑥̂𝑖 = 𝑖 1
𝑁2 , 𝜃𝑗 = 𝑗 𝜋

𝑁2+1 .

Note that for 𝛽 = 0.5, only 𝑞 = 2 satisfies condition (18). Despite this, in both Figs. 3(a) and 3(b) we observe a similar shape between
he eigenvalues of ℎ1−𝛽𝐴𝑁 and the sampling of the symbol over the grid in (i), with a lack of overlapping at initial and final grid

points. This discrepancy is immediately overcome by making a comparison between the eigenvalues of ℎ1−𝛽𝐴𝑁 and the sampling
of the symbol 𝑓𝛽 (𝑥, 𝜃) over the much finer mesh in (ii). Further tests, not reported here, show that 𝑓𝛽 (𝑥, 𝜃) keeps approximating the
eigenvalues distribution of ℎ1−𝛽𝐴𝑁 also for 𝛽 ≠ 0.5 and 𝑞 > 2−𝛽

1−𝛽 . Such a result is in line with Theorem 10.11 in [15], which states
that the GLT symbol of Eq. (1) with 𝛽 = 0, i.e., the Laplacian, is the spectral symbol independently of the grading parameter of the
map 𝑔(𝑥).
8
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Fig. 2. Region where GLT5 holds true (in blue), varying 𝛽, 𝑞.

Fig. 3. Plot of the eigenvalues of ℎ1−𝛽𝐴𝑁 with 𝛽 = 0.5, 𝑁 = 26 and of a sampling of 𝑓𝛽 (𝑥, 𝜃) over the meshes mapped by 𝑔(𝑥) = 𝑥𝑞 , 𝑞 = 2, 4 from the grids given
n (i)–(ii).

. Multigrid methods

Multigrid methods, introduced in [17] to deal with positive definite linear systems, combine two iterative methods known
s smoother and Coarse Grid Correction (CGC). The smoother is typically a simple stationary iterative method. The multigrid
lgorithm can be figured out starting from the two-grid case. One step of a two-grid method is obtained by: 1) computing an
nitial approximation by a few iterations of a pre-smoother, 2) projecting and solving the error equation into a coarser grid, 3)
nterpolating the solution of the coarser problem, 4) updating the initial approximation, and finally 5) applying a few iterations
f a post-smoother to further improve the approximation. Since the coarser grid could be too large for direct computation of the
olution, the same idea can be recursively applied to obtain the so-called V-cycle method.

A common approach to defining the coarser operator, known as geometric approach, consists in rediscretizing the same problem
n the coarser grid. This approach has the advantage of preserving the same structure of the coefficient matrix at each level. On the
ther hand, the coarser problems need to be properly scaled and the result is usually less robust than the so-called Galerkin approach.
he latter, for a given linear system 𝐴𝑁𝑥 = 𝑏, 𝐴𝑁 ∈ R𝑁×𝑁 , defines the coarser matrix as 𝐴𝐾 = 𝑃 𝑇𝑁𝐴𝑁𝑃𝑁 , where 𝑃𝑁 ∈ R𝑁×𝐾 is the
ull-rank prolongation matrix, while 𝑃 𝑇𝑁 is the restriction operator. The Galerkin approach is useful for convergence analysis, but in
ractice, it could be computationally too expensive for FDE problems.

The convergence of the V-cycle, for 𝐴𝑁 positive definite, relies on the so-called smoothing property and approximation property
see [17]). In order to discuss the convergence analysis of V-cycle applied to (5), we consider the mesh to be uniform, the diffusion
oefficient 𝐾 to be constant, 𝛾 = 1

2 , and we use weighted Jacobi as smoother. Under these assumptions and because of the Toeplitz
structure of the considered matrices, the weighted Jacobi is well-known to satisfy the smoothing property for positive definite
matrices, whenever it is convergent [18]. Moreover, according to Proposition 4.1, in the case of uniform meshes the symbol 𝑓𝛽 (𝑥, 𝜃)
of ℎ1−𝛽𝐴𝑁 vanishes with order lower than 2 at 𝜃 = 0 and the approximation property holds true with the same projectors as in the
case of the Laplacian (see [19]). However, in the case of non-uniform meshes, the grid transfer operator should take into account the
non-uniformity of the grid, see [20]. Moreover, the extension of the projectors to the 2D case is not straightforward. When dealing
9

with non-uniform meshes one may need to consider the algebraic multigrid [20].
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We propose a V-cycle whose hierarchy is built through the geometric approach. Assuming that 𝛺𝓁 = {𝑥𝓁𝑖 }
𝑁𝓁+1
𝑖=0 is the grid on the

-th level, where 𝓁 ≥ 0 and 𝛺0 is the finest mesh, then 𝛺𝓁+1, 𝓁 ≥ 0, is obtained from 𝛺𝓁 as

𝛺𝓁+1 = {𝑥𝓁0 , 𝑥
𝓁
𝑁𝓁+1

} ∪ {𝑥𝓁2𝑘}
𝑁𝓁+1

𝑘=1 ,

where 𝑁𝓁+1 = ⌊

𝑁𝓁

2 ⌋ are the degrees of freedom of Eq. (1) discretized over 𝛺𝓁+1. By iterating this process lvl times, with 𝛺lvl such
that 𝑁 lvl ≤ 3, we obtain the V-cycle hierarchy. Note that, in order to make the V-cycle properly working, the linear systems must
be scaled such that the right-hand side does not contain any grid-dependent scaling factor. Therefore, we multiply both members
of 𝐴𝑁𝑥 = 𝑏 by the diagonal matrix 𝐻𝑁 = diag𝑖=1,…,𝑁 ( 1

ℎ𝑖
). Finally, the projectors are built according to the discussion in Chapter 7

at page 129 of [20].
Regarding the smoother, at each iteration of V-cycle, one iteration of relaxed Jacobi as pre- and post-smoother is performed.

The relaxation parameter 𝜔 is estimated through the approach introduced in [13]. Such estimation is obtained by: 1) rediscretizing
Eq. (1) over a coarser grid (𝑁̃ ≤ 24), 2) computing the spectrum of the Jacobi iteration matrix, 3) choosing the weight 𝜔 in such
a way that the whole spectrum is contained inside a complex set 𝑂 = {(𝑥, 𝑦) | 𝑥 ∈ 𝐼 ⊂ R,−𝑜̃(𝑥) < 𝑦 < 𝑜̃(𝑥)}. A possible choice
for 𝑜̃(𝑥) is given by 𝑜̃(𝑥) =

√

1 − 𝑥2 + 𝑐𝑥 − 𝑐, 𝑐 > 0, which is the sum of a semicircle and a line, and is motivated by the need of
lustering the spectrum of the Jacobi iteration matrix inside the unitary circle. Note that 𝑜̃(𝑥) yields a set 𝑂 that is slightly smaller
han the unitary circle in such a way that possible outliers are still smaller than 1 in modulus. Our numerical tests in Section 6
onfirm the suitability of the choice 𝑜̃(𝑥) =

√

1 − 𝑥2 + 0.475𝑥− 0.475 and 𝐼 =
[

− 1239
1961 , 1

]

≈ [−0.63, 1] such that 𝑜̃(𝑥) ≥ 0. Note that our
choice slightly differs from the one proposed in [13], where the authors dealt with a different model. In the aforementioned settings,
our multigrid preconditioner has a cost per iteration of 𝑂 (𝑃 (𝑁) log𝑃 (𝑁)) operations, where 𝑃 (𝑁) is the cost of the matrix–vector
product 𝐴𝑁 ⋅ 𝑥. Depending on the structure of 𝐴𝑁 , i.e. on the chosen mesh, different efficient parallel strategies to perform the
matrix–vector product can be adopted to make 𝑃 (𝑁) as close as possible to linear.

Remark 5.1. From Remark 3.1, in the case where 𝛽 = 0, 𝐴𝑁 becomes the positive definite one-dimensional discrete Laplacian,
herefore we expect that our multigrid performs well for 𝛽 ≈ 0 even in the anisotropic cases where 𝛾 ≈ 0 or 𝛾 ≈ 1. When 𝛽 = 1, 𝐴𝑁
ecomes skew-symmetric, hence we do not expect that our multigrid method performs well in the cases where 𝛽 ≈ 1 and 𝛾 ≈ 0 or
≈ 1.

. Numerical results

In this section, we compare few (graded and composite) grids by reporting the reconstruction error and the convergence order
nd we check the performances of our multigrid applied to Eq. (1) varying the grid, 𝛾 and 𝛽. Precisely, aiming at increasing its
obustness, we use the multigrid method described in Section 5 as preconditioner for GMRES by performing one iteration of V-cycle
pplied directly to the coefficient matrix. Throughout, we denote our solver by -GMRES. The involved algorithms are available on
itHub [21].

Our numerical tests have been run on a server with AMD 3600 6-core (4.20 GHz) processor and 64 GB (3600 MHz) RAM and
atlab 2020b. In all our tests we consider Eq. (1) with 𝑓 (𝑥) = (1−𝛾)(1−𝛽)

𝛤 (𝛽)𝑥(1−𝑥)1−𝛽 , 𝐾(𝑥) = 1 with 𝛾 ∈ [0, 1] and 𝛽 ∈ (0, 1), whose exact
solution, according to [9], is 𝑢(𝑥) = 𝑥1−𝛽 .

For all involved iterative methods the initial guess 𝑥(0) is the null vector, the maximum amount of iterations is 100 and the
stopping criterion is

‖

‖

‖

𝐴𝑥(𝑘) − 𝑏‖‖
‖2

‖𝑏‖2
< tol,

here the tolerance is tol= 10−7 and 𝑥(𝑘) is the unknown at the 𝑘th iteration.

Test 1. In this first test, we discuss the choice of the parameter 𝑞 for the function 𝑔𝑞,𝝐(𝑥) in (9) which generates the graded meshes
discussed in Section 3.3. Precisely, fixed 𝑁 = 210, we compare in terms of approximation error the value 𝑞𝛽 , defined in (10) and
given in [7], with the numerically computed optimal value 𝑞opt obtained by minimizing the infinity norm error on a set of equispaced
values in the interval [1, 9].

Table 1 shows the optimal value 𝑞opt and the infinity norm errors 𝑒opt and 𝑒𝛽 yield when discretizing Eq. (1) over the grid mapped
by 𝑔𝑞,𝝐(𝑥) with 𝑞 = 𝑞opt and 𝑞 = 𝑞𝛽 , respectively, for various choices of 𝝐 = (𝜖1, 𝜖2). Note that 𝑞0.2 = 1.5, 𝑞0.5 = 3 are obtained from
18), while the case 𝛽 = 0.8 deserves a special attention as 𝑞0.8 = 1+0.8

1−0.8 = 9 yields a step length much lower than the machine
precision for 𝑁 = 210 (ℎ1 ≈ 10−28). Therefore, according to the discussion in Section 3.3, we set 𝑞0.8 = 5.3 such that ℎ1 = 10−16.

When 𝛽 = 0.2, in Table 1 we observe an increase in the error when choosing 𝑞𝛽 with respect to 𝑞opt, i.e., 𝑒𝛽 ≈ 2𝑒opt independently
of the choice of 𝛾 and of 𝝐. Moreover, the interval lengths 𝜖1, 𝜖2 do not seem to affect the error in the case of 𝑞𝛽 (all 𝝐(𝑖) yield the
ame 𝑒𝛽). This also means that the use of a smooth function (cases 𝝐(1), 𝝐(2), and 𝝐(4)) for generating the grid does not decrease the
rror in comparison with a non-smooth function (cases 𝝐(3), 𝝐(5), and 𝝐(6)), therefore smaller values of 𝜖1 and 𝜖2 can be chosen, in

order to speed up the matrix–vector product. When 𝛽 = 0.5, the difference between 𝑒𝛽 and 𝑒opt is almost negligible, both do not
vary that much with 𝛾 and 𝜖, and again the choice of 𝜖1, 𝜖2 is not so crucial. When 𝛽 = 0.8, unlike the previous two cases, if the

(1)
10

nonlinear part of the function 𝑔𝑞,𝝐(𝑥) is too short, e.g., when considering 𝝐 , the error increases greatly. This happens because more
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Table 1
Comparison between the numerically computed optimal value 𝑞opt and 𝑞𝛽 , in terms of infinity norm approximation error varying 𝛾, 𝛽 and ϵ.

𝛾 𝛽 (𝑞𝛽 ) ϵ(1) = (0.1, 0.05) ϵ(2) = (0.2, 0.05) ϵ(3) = (0.25, 0) ϵ(4) = (0.45, 0.05) ϵ(5) = (0.5, 0) ϵ(6) = (1, 0)

𝑞opt 𝑒opt 𝑒𝛽 𝑞opt 𝑒opt 𝑒𝛽 𝑞opt 𝑒opt 𝑒𝛽 𝑞opt 𝑒opt 𝑒𝛽 𝑞opt 𝑒opt 𝑒𝛽 𝑞opt 𝑒opt 𝑒𝛽

0.3
0.2 (1.5) 1.9 1.2e−5 3.3e−5 1.8 1.3e−5 3.3e−5 1.8 1.3e−5 3.3e−5 1.7 1.5e−5 3.3e−5 1.7 1.5e−5 3.3e−5 1.7 1.8e−5 3.3e−5
0.5 (3.0) 2.7 5.2e−5 5.7e−5 3.0 2.6e−5 2.6e−5 2.9 3.1e−5 3.2e−5 3.1 2.1e−5 2.2e−5 3.0 2.2e−5 2.2e−5 2.8 3.5e−5 3.7e−5
0.8 (5.3) 4.4 1.9e−3 6.3e−3 5.3 7.1e−4 7.1e−4 4.6 1.6e−3 5.7e−3 5.3 7.1e−4 7.1e−4 5.3 7.1e−4 7.1e−4 5.3 7.1e−4 7.1e−4

0.5
0.2 (1.5) 1.7 9.0e−6 2.1e−5 1.7 9.6e−6 2.1e−5 1.7 9.7e−6 2.1e−5 1.7 1.1e−5 2.1e−5 1.7 1.1e−5 2.1e−5 1.6 1.3e−5 2.1e−5
0.5 (3.0) 2.9 1.3e−5 1.4e−5 3.0 1.1e−5 1.1e−5 3.0 1.2e−5 1.2e−5 2.9 1.5e−5 1.5e−5 2.9 1.5e−5 1.5e−5 2.7 2.4e−5 2.6e−5
0.8 (5.3) 4.3 1.0e−3 4.2e−3 5.3 3.5e−4 3.7e−4 4.6 8.0e−4 2.9e−3 5.3 3.4e−4 3.4e−4 5.3 3.4e−4 3.4e−4 5.3 3.4e−4 3.4e−4

0.7
0.2 (1.5) 1.7 5.6e−6 1.3e−5 1.7 6.0e−6 1.3e−5 1.7 6.1e−6 1.3e−5 1.7 6.9e−6 1.3e−5 1.7 7.0e−6 1.3e−5 1.6 8.1e−6 1.3e−5
0.5 (3.0) 2.6 1.4e−5 1.8e−5 2.7 8.2e−6 1.0e−5 2.7 9.8e−6 1.5e−5 2.7 8.5e−6 8.7e−6 2.7 8.7e−6 9.0e−6 2.6 1.3e−5 1.5e−5
0.8 (5.3) 3.8 2.1e−4 1.9e−3 4.1 4.4e−5 4.6e−4 3.7 2.5e−4 5.3e−3 4.2 3.7e−5 5.1e−4 4.2 3.7e−5 5.5e−4 4.2 3.7e−5 5.2e−4

grid points are needed near 𝑥 = 0 to deal with the singularity of the solution, and by increasing 𝜖1, 𝑔𝑞,𝝐(𝑥) projects more grid points
near 𝑥 = 0.

Moreover, by comparing 𝝐(2) with 𝝐(3) we note that when 𝑔𝑞,𝝐(𝑥) is smooth, i.e., 𝝐 = 𝝐(2), the error is lower than in the non-smooth
case 𝝐 = 𝝐(3), especially when 𝛽 ≥ 0.5, even if the length 𝜖1+𝜖2 of the interval where 𝑔𝑞,𝝐(𝑥) is non linear does not change. Therefore,
a smooth function 𝑔𝑞,𝝐(𝑥) is recommended when 𝛽 ≈ 1.

Note that, in any of the tested cases, a full non-uniform mesh does not seem to be necessary, since the lowest error is always
reached for mixed meshes.

Test 2. We now fix 𝛾 = 0.5 and test the robustness of -GMRES by reporting the iterations to tolerance (It), needed for solving
Eq. (1) discretized over the grids reported in Section 3.3.

Table 2 shows It, as well as the numerical infinity norm error 𝑒∞ and the convergence order computed as the ratio between the
infinity-norm error over two grids, with 𝑁 and 2𝑁 points, in log2 scale. With symbol ‘‘-’’ we mean that the solver exceeded the
maximum amount of iterations fixed to 100. We observe that when considering a graded mesh mapped by 𝑔𝑞,𝝐(𝑥), for all choices of
𝛽, -GMRES converges linearly. On the other hand, for both given composite meshes and for 𝛽 ≤ 0.5, the value of It increases with
𝑁 , thus the linear convergence is lost. Fewer iterations are obtained for 𝛽 = 0.8, but the approximation error yield by the composite

eshes substantially worsens compared to that of the meshes mapped by 𝑔𝑞,𝝐(𝑥).
In terms of accuracy, when considering 𝛽 = 0.2, the convergence order of the grids mapped by 𝑔𝑞,𝝐 is 1+ 𝛽, which coincides with

he theoretical convergence rate obtained in [7]. When 𝛽 = 0.5, the mapping function 𝑔𝑞,𝝐(𝑥) with 𝝐 = 𝝐(1) seems to have a too short
onlinear part, since for 𝑁 < 29 − 1 it yields a larger error in comparison with other choices of 𝝐. When 𝛽 = 0.8, for

• 𝝐 = 𝝐(6) the order 𝛽 + 1 = 1.8 is obtained only for 𝑁 ≤ 26 − 1, while for larger 𝑁 the order decreases. This is caused by the
lower cap (11) imposed on the smallest step size, i.e., ℎ1 = 10−16, which is needed to avoid stability problems related to the
machine precision;

• 𝝐 = 𝝐(4), similarly to 𝝐 = 𝝐(6), the convergence order decreases with 𝑁 for 𝑁 > 28 − 1. When 27 − 1 ≤ 𝑁 ≤ 28 − 1 we have
𝑜𝑟𝑑 > 1 + 𝛽, but 𝑒∞ for 26 − 1 ≤ 𝑁 ≤ 27 − 1 is still much larger than in the case of 𝝐(6), therefore 𝑔𝑞,𝝐 with 𝝐 = 𝝐(4) does not
allow higher convergence order than with 𝝐 = 𝝐(6);

• 𝝐 = 𝝐(2), which yields a mesh with a shorter non-uniform part compared to the one yielded by 𝝐 = 𝝐(4), the convergence order
keeps increasing and at 𝑁 = 210 − 1 provides almost the same accuracy error than 𝑔𝑞,𝝐 with 𝝐 = 𝝐(4), 𝝐(6).

This suggests that the length of the nonlinear part, i.e., 𝜖1 + 𝜖2, should depend not only on 𝛽, as already observed in Test 1, but
lso on 𝑁 : the larger 𝑁 is, the shorter 𝜖1 + 𝜖2 can be.

est 3. We now fix 𝛾 = 0.5, 𝛽 = 0.9 and compare -GMRES with the Preconditioned Fast Conjugate Gradient Squared (PFCGS)
ntroduced in [9], which consists in a T. Chan’s block circulant preconditioner, with a cost per iteration of 𝑂(𝑁 log𝑁). Precisely,
uch a preconditioner has a two-block structure as a consequence of the composite mesh combining two types of meshes, the
efinement near 𝑥 = 0 and the uniform mesh.

Table 3 shows 𝑒∞ and It of both PFCGS and -GMRES in case of the composite mesh given in [9] and described in Section 3.3.
e recall that, according to Eq. (12), 𝑁1 = 𝑔𝐺(𝑁) is the number of points of the refined part of the mesh, while 𝑁2 is the number

f points that compose the uniform part of the mesh and therefore the composite mesh has 𝑁 = 𝑁1 + 𝑁2 points. We note that
-GMRES has a more stable iteration number when increasing 𝑁 with respect to PFCGS. In Table 4, we only consider -GMRES
nd further test it over both composite and graded meshes. Aside from It and 𝑒∞, we also check the 2-norm relative numerical error
rel of -GMRES varying 𝑁 and the grid. Note that, due to the solution being singular, 𝑒∞ describes the error near the singularity,
hile 𝑒rel gives an average error on the whole domain.

We note that 𝝐(6) yields the lowest 𝑒∞ for 24 ≤ 𝑁 + 1 ≤ 26, but then, increasing 𝑁 , 𝑒∞ stops decreasing while 𝑒rel still decreases.
his is because the lower cap (11) on the step size does not allow to increase in the accuracy near the singularity, where a larger
mount of grid points is required, and hence does not allow 𝑒∞ to further decrease. On the other hand, when increasing 𝑁 the
onsingular part of the solution is better approximated, and hence 𝑒rel decreases. Our choice for the lower cap as ℎ1 = 10−16 could
f course be modified. Indeed, we observe that again for 𝝐 = 𝝐(6) when 𝑁 = 26 − 1 we obtain an 𝑒∞ close to the 𝑒∞ given by the
11
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Table 2
Iterations to tolerance of -GMRES, approximation error, and convergence order varying 𝑁 and the grid for 𝛾 = 0.5.
𝛽 𝑁 + 1 Composite mesh mapped by 𝑔𝐺(𝑁) Non-uniform mesh mapped by 𝑔𝑞,ϵ(𝑥)

𝑔𝐺(𝑁) = ⌊

√

𝑁⌋ 𝑔𝐺(𝑁) = ⌊log2𝑁⌋ ϵ(1) = (0.1, 0.05) ϵ(2) = (0.2, 0.05) ϵ(4) = (0.45, 0.05) ϵ(6) = (1, 0)

It 𝑒∞ ord It 𝑒∞ ord It 𝑒∞ ord It 𝑒∞ ord It 𝑒∞ ord It 𝑒∞ ord

0.2

24 11 2.9e−3 11 2.9e−3 8 3.3e−3 10 3.0e−3 10 3.0e−3 10 3.0e−3
25 12 1.0e−3 1.5 11 1.2e−3 1.2 8 1.4e−3 1.3 8 1.3e−3 1.2 8 1.3e−3 1.1 10 1.3e−3 1.1
26 16 4.7e−4 1.1 11 5.8e−4 1.1 8 5.9e−4 1.2 8 5.9e−4 1.2 8 5.9e−4 1.2 8 5.9e−4 1.2
27 27 2.5e−4 0.9 17 2.9e−4 1.0 8 2.6e−4 1.2 8 2.6e−4 1.2 8 2.6e−4 1.2 8 2.6e−4 1.2
28 35 1.4e−4 0.8 22 1.5e−4 0.9 8 1.1e−4 1.2 8 1.1e−4 1.2 8 1.1e−4 1.2 8 1.1e−4 1.2
29 40 8.1e−5 0.8 28 8.4e−5 0.9 8 4.9e−5 1.2 8 4.9e−5 1.2 8 4.9e−5 1.2 9 4.9e−5 1.2
210 – – – 36 4.7e−5 0.8 8 2.1e−5 1.2 8 2.1e−5 1.2 8 2.1e−5 1.2 9 2.1e−5 1.2

0.5

24 8 2.3e−2 8 2.3e−2 7 2.0e−2 8 1.2e−2 10 5.1e−3 10 5.0e−3
25 9 8.3e−3 1.5 9 1.1e−2 1.0 8 9.4e−3 1.1 8 4.1e−3 1.5 9 1.8e−3 1.5 10 1.8e−3 1.5
26 11 2.9e−3 1.5 11 5.7e−3 1.0 9 3.2e−3 1.6 9 1.2e−3 1.8 9 6.4e−4 1.5 10 6.4e−4 1.5
27 13 1.3e−3 1.1 11 2.8e−3 1.0 9 9.0e−4 1.8 9 3.1e−4 1.9 9 2.3e−4 1.5 10 2.3e−4 1.5
28 17 9.1e−4 0.6 13 1.4e−3 1.0 10 2.3e−4 2.0 10 8.0e−5 1.9 10 8.0e−5 1.5 10 1.0e−4 1.1
29 22 6.4e−4 0.5 16 7.8e−4 0.9 10 5.6e−5 2.0 11 2.8e−5 1.5 11 3.0e−5 1.4 10 5.2e−5 1.0
210 22 4.5e−4 0.5 17 5.1e−4 0.6 11 1.4e−5 2.0 10 1.1e−5 1.3 10 1.5e−5 1.0 11 2.6e−5 1.0

0.8

24 8 1.1e−1 8 1.1e−1 7 1.2e−1 7 1.3e−1 7 9.0e−2 8 2.2e−2
25 8 7.6e−2 0.6 8 8.7e−2 0.4 7 1.1e−1 0.2 7 9.7e−2 0.4 8 5.0e−2 0.8 8 6.5e−3 1.8
26 10 5.0e−2 0.6 8 6.6e−2 0.4 7 7.7e−2 0.5 7 5.8e−2 0.7 8 2.4e−2 1.0 8 1.9e−3 1.8
27 10 2.5e−2 1.0 9 5.0e−2 0.4 7 4.5e−2 0.8 7 3.5e−2 0.7 8 4.0e−3 2.6 8 9.2e−4 1.1
28 11 1.3e−2 1.0 9 3.8e−2 0.4 7 3.2e−2 0.5 7 1.3e−2 1.4 8 5.8e−4 2.8 9 5.8e−4 0.7
29 13 5.5e−3 1.2 10 2.9e−2 0.4 7 1.7e−2 0.9 8 2.7e−3 2.3 8 4.5e−4 0.4 9 4.3e−4 0.4
210 14 4.8e−3 0.2 10 2.2e−2 0.4 7 4.2e−3 2.0 8 3.7e−4 2.8 8 3.4e−4 0.4 9 3.4e−4 0.3

Table 3
Iterations to tolerance of PFCGS and -GMRES with 𝛾 = 0.5 and 𝛽 = 0.9.
𝑁1 𝑁2 𝑒∞ It PFCGS It -GMRES

23 28 7.9306e−2 13 7
24 29 4.2326e−2 16 7
25 210 1.3025e−2 25 8

Table 4
Iterations to tolerance of -GMRES with related 2-norm relative error, and approximation error varying 𝑁 and the grid for 𝛾 = 0.5, 𝛽 = 0.9.
𝑁 + 1 Composite mesh mapped by 𝑔𝐺(𝑁) Non-uniform mesh mapped by 𝑔𝑞,ϵ(𝑥)

𝑔𝐺(𝑁) = ⌊

√

𝑁⌋ 𝑔𝐺(𝑁) = ⌊log2𝑁⌋ ϵ(1) = (0.1, 0.05) ϵ(2) = (0.2, 0.05) ϵ(4) = (0.45, 0.05) ϵ(6) = (1, 0)

It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel

24 7 1.9e−1 8.7e−2 7 1.9e−1 8.7e−2 7 2.3e−1 8.8e−2 6 2.0e−1 9.6e−2 6 1.8e−1 1.2e−1 7 6.4e−2 1.0e−1
25 7 1.5e−1 5.3e−2 7 1.6e−1 5.6e−2 7 1.9e−1 6.1e−2 7 1.9e−1 6.7e−2 7 1.2e−1 6.4e−2 8 3.2e−2 3.3e−2
26 8 1.3e−1 3.1e−2 8 1.4e−1 3.5e−2 7 1.7e−1 4.0e−2 7 1.6e−1 4.3e−2 7 4.4e−2 2.4e−2 8 2.9e−2 1.6e−2
27 9 8.9e−2 1.6e−2 8 1.2e−1 2.2e−2 7 1.4e−1 2.6e−2 7 9.7e−2 2.3e−2 8 2.9e−2 1.2e−2 8 4.1e−2 1.2e−2
28 9 6.3e−2 8.5e−3 8 1.1e−1 1.3e−2 7 9.8e−2 1.7e−2 7 3.7e−2 1.2e−2 8 4.1e−2 1.0e−2 8 2.7e−2 6.3e−3
29 11 3.6e−2 4.1e−3 9 9.4e−2 8.3e−3 7 5.2e−2 1.2e−2 8 3.3e−2 9.7e−3 8 4.6e−2 1.1e−2 8 4.6e−2 7.9e−3
210 11 1.8e−2 2.2e−3 10 8.2e−2 5.1e−3 7 4.9e−2 1.1e−2 8 4.5e−2 1.1e−2 8 4.5e−2 9.6e−3 8 4.6e−2 7.7e−3

composite mesh with 𝑔𝐺(𝑁) = ⌊

√

𝑁⌋ and 𝑁 = 210 − 1. Therefore, by improving the lower cap on the step size, the mesh mapped
y 𝑔𝑞,𝝐(𝑥) could potentially lead to lower errors with much smaller sizes compared to the composite mesh.

Finally, we note that the iterations are stable as 𝑁 increases for any of the tested grids, which makes -GMRES a suitable solver.
Therefore, although one iteration of PFCGS is computationally less expensive than our preconditioner, -GMRES outperforms PFCGS
on large linear systems thanks to its robustness.

Test 4. We have shown that -GMRES works in the case where 𝛾 = 0.5 and that it outperforms PFCGS. Here we only focus on the
behavior of -GMRES and show that it is a suitable solver even in the extreme anisotropic cases where 𝛾 = 0 or 𝛾 = 1.

Table 5 shows It, the infinity norm error 𝑒∞ and the relative 2-norm error 𝑒rel varying 𝛽 ∈ {0.1, 0.3, 0.7} and 𝛾 ∈ {0, 1}. We recall
that when ‘‘-’’ is displayed, the solver exceeded the maximum amount of iterations fixed to 100.

When 𝛽 = 0.1 and 𝛽 = 0.3, despite the strong spatial anisotropy, the coefficient matrix is close to Hermitian (see Remark 5.1),
and therefore -GMRES is expected to be a suitable preconditioner. Indeed, when considering 𝝐(1), 𝝐(4), 𝝐(6), It does not increase with
𝑁 for both choices of 𝛾 and both errors seem to decrease with order 1 + 𝛽 as observed in Test 2 with 𝛾 = 0.5.

When 𝛽 = 0.7, as the coefficient matrix is close to skew-symmetric, our multigrid preconditioning is not effective anymore. In
fact, when 𝛾 = 0 we observe stable iterations only for the composite meshes, but the error does not decrease as expected (see Test
(2). When considering the grid mapped by 𝑔 (𝑥) with 𝝐 = 𝝐(6), the iterations are not stable while increasing 𝑁 , but the predicted
12
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Table 5
Iterations of -GMRES with related 2-norm relative error, and approximation error varying 𝑁 and the grid for 𝛾 ∈ {0, 1}.
𝛾 𝛽 𝑁 + 1 Composite mesh mapped by 𝑔𝐺(𝑁) Non-uniform mesh mapped by 𝑔𝑞,ϵ(𝑥)

𝑔𝐺(𝑁) = ⌊

√

𝑁⌋ 𝑔𝐺(𝑁) = ⌊log2𝑁⌋ ϵ(1) = (0.1, 0.05) ϵ(4) = (0.45, 0.05) ϵ(6) = (1, 0)

It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel It 𝑒∞ 𝑒rel

0

0.1

25 10 9.2e−4 1.3e−3 11 1.0e−3 1.4e−3 7 1.5e−3 2.0e−3 7 1.5e−3 2.0e−3 7 1.5e−3 2.1e−3
26 12 4.7e−4 6.2e−4 11 5.1e−4 6.7e−4 7 7.4e−4 9.5e−4 7 7.3e−4 9.9e−4 7 7.4e−4 1.0e−3
27 21 2.6e−4 3.3e−4 11 2.7e−4 3.4e−4 7 3.6e−4 4.6e−4 7 3.6e−4 4.8e−4 7 3.6e−4 4.9e−4
28 23 1.4e−4 1.8e−4 18 1.5e−4 1.8e−4 7 1.8e−4 2.2e−4 7 1.8e−4 2.3e−4 7 1.8e−4 2.4e−4
29 27 7.9e−5 9.5e−5 18 7.9e−5 9.5e−5 7 8.5e−5 1.1e−4 7 8.5e−5 1.1e−4 7 8.5e−5 1.1e−4
210 – – – 25 4.3e−5 5.1e−5 7 4.1e−5 5.1e−5 7 4.1e−5 5.4e−5 7 4.1e−5 5.5e−5

0.3

25 14 6.1e−3 7.4e−3 14 7.4e−3 8.8e−3 17 6.5e−3 7.8e−3 17 4.5e−3 6.8e−3 17 4.6e−3 7.2e−3
26 12 3.1e−3 3.6e−3 14 3.9e−3 4.5e−3 13 2.7e−3 3.2e−3 13 2.0e−3 3.0e−3 13 2.0e−3 3.2e−3
27 12 1.8e−3 2.0e−3 11 2.2e−3 2.4e−3 9 1.1e−3 1.3e−3 10 9.0e−4 1.3e−3 10 9.0e−4 1.4e−3
28 20 1.1e−3 1.2e−3 12 1.3e−3 1.4e−3 10 4.5e−4 5.4e−4 11 3.9e−4 5.7e−4 11 3.9e−4 6.1e−4
29 16 6.9e−4 7.4e−4 15 7.5e−4 8.0e−4 11 1.9e−4 2.3e−4 10 1.7e−4 2.5e−4 10 1.7e−4 2.6e−4
210 30 4.3e−4 4.5e−4 20 4.5e−4 4.8e−4 10 7.9e−5 9.6e−5 10 7.2e−5 1.1e−4 10 7.2e−5 1.1e−4

0.7

25 17 1.1e−1 1.2e−1 17 1.3e−1 1.4e−1 – – – 33 3.2e−2 3.7e−2 20 1.8e−2 3.2e−2
26 18 6.3e−2 6.9e−2 18 8.8e−2 9.4e−2 39 9.1e−2 9.5e−2 33 1.1e−2 1.3e−2 22 6.7e−3 1.2e−2
27 18 3.0e−2 3.1e−2 18 6.1e−2 6.3e−2 – – – 42 3.6e−3 4.3e−3 19 2.3e−3 4.3e−3
28 19 1.6e−2 1.7e−2 18 4.2e−2 4.3e−2 – – – 51 1.1e−3 1.4e−3 23 8.0e−4 1.5e−3
29 20 9.5e−3 9.6e−3 18 2.9e−2 3.0e−2 – – – 56 3.5e−4 4.6e−4 26 2.7e−4 5.1e−4
210 27 6.9e−3 7.0e−3 19 2.1e−2 2.1e−2 – – – 51 1.3e−4 1.9e−4 32 1.2e−4 2.3e−4

1

0.1

25 11 8.0e−5 6.1e−5 11 1.4e−4 8.6e−5 8 4.2e−4 3.3e−4 8 4.2e−4 3.6e−4 8 4.2e−4 3.7e−4
26 13 4.5e−5 5.4e−5 11 4.0e−5 3.8e−5 8 2.0e−4 1.3e−4 8 2.0e−4 1.4e−4 8 2.0e−4 1.4e−4
27 21 3.4e−5 3.9e−5 12 2.8e−5 3.2e−5 8 9.3e−5 4.8e−5 8 9.3e−5 5.3e−5 8 9.3e−5 5.4e−5
28 32 2.1e−5 2.4e−5 15 1.9e−5 2.2e−5 8 4.3e−5 1.7e−5 8 4.3e−5 1.9e−5 8 4.3e−5 1.9e−5
29 – – – 18 1.2e−5 1.4e−5 8 2.0e−5 5.9e−6 8 2.0e−5 6.3e−6 8 2.0e−5 6.3e−6
210 – – – 25 7.4e−6 8.0e−6 8 9.5e−6 2.2e−6 8 9.5e−6 2.1e−6 8 9.5e−6 2.1e−6

0.3

25 16 1.3e−3 9.4e−4 19 1.1e−3 8.0e−4 21 1.3e−3 1.0e−3 19 4.6e−4 6.4e−4 21 4.5e−4 6.3e−4
26 15 8.9e−4 5.7e−4 15 8.0e−4 5.1e−4 13 5.6e−4 4.5e−4 15 2.2e−4 3.1e−4 15 2.2e−4 3.1e−4
27 20 5.7e−4 3.2e−4 13 5.2e−4 3.0e−4 12 2.3e−4 2.0e−4 10 1.0e−4 1.4e−4 12 1.0e−4 1.4e−4
28 26 3.5e−4 1.7e−4 15 3.3e−4 1.6e−4 11 9.6e−5 8.3e−5 11 4.7e−5 6.1e−5 11 4.7e−5 6.2e−5
29 – – – 16 2.1e−4 8.8e−5 11 3.9e−5 3.5e−5 11 2.1e−5 2.6e−5 11 2.1e−5 2.7e−5
210 – – – 21 1.3e−4 4.7e−5 11 1.6e−5 1.4e−5 11 8.8e−6 1.1e−5 11 8.8e−6 1.1e−5

0.7

25 17 5.2e−2 1.4e−2 17 6.3e−2 1.6e−2 – – – – – – – – –
26 21 2.8e−2 5.2e−3 18 4.1e−2 7.5e−3 – – – – – – – – –
27 29 9.7e−3 1.5e−3 19 2.7e−2 3.5e−3 – – – – – – – – –
28 36 3.4e−3 6.0e−4 23 1.8e−2 1.6e−3 – – – – – – – – –
29 – – – 27 1.2e−2 7.7e−4 – – – – – – – – –
210 – – – 28 7.7e−3 3.7e−4 – – – – – – – – –

convergence order is restored. When 𝛾 = 1, -GMRES does not converge for any of the tested grids mapped by 𝑔𝑞,𝝐(𝑥). When using a
composite mesh, instead, -GMRES converges but the number of iterations is large and increases with 𝑁 , while the error decreases
oo slowly.

In addition to the tests reported in this paper, our multigrid preconditioner has undergone further testing that confirms its
obustness. Notably, when dealing with a non-constant diffusion coefficient

𝐾(𝑥) =

{

1, if 𝑥 < 1
2 ,

2, if 𝑥 ≥ 1
2 ,

we observed only a negligible difference in iteration count. This finding provides further evidence of the effectiveness and reliability
of our preconditioner.

7. Conclusions

We have considered a FVE discretization over a generic mesh of a conservative steady-state two-sided FDE whose solution is
singular at the boundary, with a special focus on grids that combine a graded mesh near the singularity with a uniform mesh where
the solution is smooth. The approximation order of the considered graded meshes has numerically been compared with the one of
the composite mesh used in [9], showing that lower approximation errors can be obtained.

By exploiting the mesh structure, we have computed the symbol of the resulting coefficient matrices in the case of non-uniform
meshes mapped by a function. The related spectral information has been leveraged to build an ad-hoc multigrid preconditioner.
Through a wide number of numerical tests, we have shown that, except for 𝛾 ≈ 0 or 𝛾 ≈ 1 and 𝛽 ≈ 1, such a multigrid is a valid
alternative to the circulant preconditioner developed in [9] for composite meshes.
13
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When 𝛽 ≈ 0, as done in [13], a band approximation of the coefficient matrix could be exploited in order to further reduce
he computational cost of the preconditioning iteration. We stress that multigrid methods should perform even better in the two-
imensional case with respect to the circulant preconditioner since it is well-known that multilevel circulant matrices used as
reconditioners for multilevel Toeplitz matrices cannot ensure superlinear convergence; see [22].

Finally, we mention that all the retrieved spectral results could easily be extended to time-dependent problems treated,
.g., in [23] and this could be used to have insights on the stability of the chosen time scheme.
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ppendix A. Proof of Proposition 3.2

The explicit form of coefficients 𝑎, 𝑏, 𝑐, 𝑚, 𝑞 is obtained by solving the following equation

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑔𝑞,𝝐(𝜖−1 ) = 𝑔𝑞,𝝐(𝜖+1 )
𝑔𝑞,𝝐((𝜖1 + 𝜖2)−) = 𝑔𝑞,𝝐((𝜖1 + 𝜖2)+)
𝑔′𝑞,𝝐(𝜖

−
1 ) = 𝑔′𝑞,𝝐(𝜖

+
1 )

𝑔′𝑞,𝝐((𝜖1 + 𝜖2)
−) = 𝑔′𝑞,𝝐((𝜖1 + 𝜖2)

+)
𝑔𝑞,𝝐(1) = 1

(A.1)

where 𝑔𝑞,𝝐(𝜉±) = lim𝑥→𝜉± 𝑔𝑞,𝝐(𝑥). Eq. (A.1) can be seen as a linear system with coefficient matrix

𝐺 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜖21 𝜖1 1 0 0
(𝜖1 + 𝜖2)2 𝜖1 + 𝜖2 1 −(𝜖1 + 𝜖2) −1

2𝜖1 1 0 0 0
2(𝜖1 + 𝜖2) 1 0 −1 0

0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

whose determinant is det(𝐺) = 2𝜖1𝜖2 − 2𝜖2 + 𝜖22 . Finally, since det(𝐺) = 0 if and only if 𝜖1 =
2−𝜖2
2 , and 0 < 𝜖1 + 𝜖2 ≤ 1 with 𝜖2 > 0, we

conclude that det(𝐺) ≠ 0 and therefore 𝑔𝑞,𝝐(𝑥) is well-defined.

Appendix B. Proof of Theorem 4.2

Let us fix 𝑁 ∈ N and let {𝑥̂𝑖}𝑁+1
𝑖=0 be the uniform grid with 𝑥̂𝑖 = 𝑖ℎ, 𝑖 = 0,… , 𝑁 + 1, and ℎ = 1

𝑁+1 . Then, according to Eq. (8), by
letting 𝑥𝑖 = 𝑔(𝑥̂𝑖), 𝑖 = 0,… , 𝑁 + 1, from the Taylor expansion of 𝑔(𝑥̂𝑖−1), ∀𝑖, it holds

𝑔(𝑥̂𝑖−1) = 𝑔(𝑥̂𝑖) − 𝑔′(𝑥̂𝑖)ℎ + 𝑔′′(𝑥̂𝑖)
ℎ2

2
+ O(ℎ3), ∀𝑖 = 1,… , 𝑁,

and since ℎ𝑖 = 𝑔(𝑥̂𝑖) − 𝑔(𝑥̂𝑖−1), we have

ℎ𝑖 = 𝑔′(𝑥̂𝑖)ℎ − 𝑔′′(𝑥̂𝑖)
ℎ2

2
+ O(ℎ3). (B.1)

In the case where 𝑘 ∈ Z, from (B.1) we have

ℎ𝑖+𝑘 = 𝑔′(𝑥̂𝑖+𝑘)ℎ − 𝑔′′(𝑥̂𝑖+𝑘)
ℎ2

2
+ O(ℎ3), (B.2)

and through the Taylor expansions of 𝑔′(𝑥̂𝑖+𝑘) and 𝑔′′(𝑥̂𝑖+𝑘) we finally obtain

ℎ = 𝑔′(𝑥̂ )ℎ + 𝑔′′(𝑥̂ )ℎ2 2𝑘 − 1 + O(𝑘2ℎ3).
14

𝑖+𝑘 𝑖 𝑖 2
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Then, with 𝛾 = 1
2 , 𝐾(𝑥) = 𝐾 and 𝐾̃ = 𝐾

𝛤 (𝛽+1) , from Eq. (5) we have

𝑎𝑖,𝑖 = 𝐾̃
⎡

⎢

⎢

⎣

( ℎ𝑖2 )
𝛽

ℎ𝑖
+ 1

2

( ℎ𝑖2 )
𝛽 − (ℎ𝑖+1 +

ℎ𝑖
2 )

𝛽

ℎ𝑖+1
− 1

2

(ℎ𝑖 +
ℎ𝑖+1
2 )𝛽 − ( ℎ𝑖+12 )𝛽

ℎ𝑖
+

( ℎ𝑖+12 )𝛽

ℎ𝑖+1

⎤

⎥

⎥

⎦

= 𝐾̃
(

𝑆1 +
1
2
𝑆2 −

1
2
𝑆3 + 𝑆4

)

,

where

𝑆1 =
( ℎ𝑖2 )

𝛽

ℎ𝑖
= 1

2𝛽
ℎ𝛽−1𝑖 = 1

2𝛽
(

𝑔′𝑖ℎ + O(ℎ2)
)𝛽−1 = 1

2𝛽 (𝑔′𝑖ℎ)1−𝛽
(1 + O(ℎ)) ;

𝑆2 =
( ℎ𝑖2 )

𝛽 − (ℎ𝑖+1 +
ℎ𝑖
2 )

𝛽

ℎ𝑖+1
=

(𝑔′𝑖ℎ)
𝛽
(

( 1
2 + O(ℎ)

)𝛽 −
( 3
2 + O(ℎ)

)𝛽
)

𝑔′𝑖ℎ(1 + O(ℎ))
= 1

2𝛽 (𝑔′𝑖ℎ)1−𝛽

(

1 + O(ℎ)
)𝛽 − 3𝛽

(

1 + O(ℎ)
)𝛽

1 + O(ℎ)

= 1
2𝛽 (𝑔′𝑖ℎ)1−𝛽

(

1 − 3𝛽 + O(ℎ)
)

(

1 + O(ℎ)
)

= 1
2𝛽 (𝑔′𝑖ℎ)1−𝛽

(

1 − 3𝛽 + O(ℎ)
)

;

𝑆3 =
(ℎ𝑖 +

ℎ𝑖+1
2 )𝛽 − ( ℎ𝑖+12 )𝛽

ℎ𝑖
=

(𝑔′𝑖ℎ)
𝛽
(

( 3
2 + O(ℎ)

)𝛽 −
( 1
2 + O(ℎ)

)𝛽
)

𝑔′𝑖ℎ(1 + O(ℎ))
= 1

2𝛽 (𝑔′𝑖ℎ)1−𝛽
3𝛽
(

1 + O(ℎ)
)𝛽 −

(

1 + O(ℎ)
)𝛽

1 + O(ℎ)

= 1
2𝛽 (𝑔′𝑖ℎ)1−𝛽

(

3𝛽 − 1 + O(ℎ)
)

(

1 + O(ℎ)
)

= 1
2𝛽 (𝑔′𝑖ℎ)1−𝛽

(

3𝛽 − 1 + O(ℎ)
)

;

𝑆4 =
( ℎ𝑖+12 )𝛽

ℎ𝑖+1
= 1

2𝛽
ℎ𝛽−1𝑖+1 = 1

2𝛽
(

𝑔′𝑖ℎ + O(ℎ2)
)𝛽−1 = 1

2𝛽 (𝑔′𝑖ℎ)1−𝛽
(1 + O(ℎ)) ;

with 𝑔′𝑖 = 𝑔′(𝑥̂𝑖) and 𝑔′′𝑖 = 𝑔′′(𝑥̂𝑖).
Assembling 𝑎𝑖,𝑖 we obtain

ℎ1−𝛽𝑎𝑖,𝑖 =
𝐾̃

2𝛽𝑔′𝑖
1−𝛽

(

3 − 3𝛽
)

+ O(ℎ). (B.3)

With the same approach we obtain

ℎ1−𝛽𝑎𝑖,𝑖±1 =
𝐾̃

2𝛽𝑔′𝑖
1−𝛽

[

3𝛽+1 − 4 − 5𝛽
]

+ O(ℎ); (B.4)

ℎ1−𝛽𝑎𝑖,𝑖±𝑘 =
𝐾̃

2𝛽𝑔′𝑖
1−𝛽

[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

+ O(𝑘ℎ), (B.5)

ith 1 < 𝑘 ≤ 𝑁𝜁 , 0 < 𝜁 < 1, such that 𝑘ℎ→ 0 as 𝑘 → ∞.
In the case where 𝑁𝜁 < 𝑘 ≤ 𝑁 the approximation yields a large error, therefore we prove that 𝑎𝑖,𝑖+𝑘 = o(ℎ). Let 𝑟 = ∑𝑘

𝑗=1 ℎ𝑖+𝑗 ,
hen 0 < 𝑟 < 1 ∀𝑘 and

• if 𝑘 = O(𝑁𝜁 ) = O(ℎ−𝜁 ), we have

𝑟 =
O(𝑁𝜁 )
∑

𝑗=1
ℎ𝑖+𝑗 =

O(𝑁𝜁 )
∑

𝑗=1

(

𝑔′𝑖ℎ + O(𝑗ℎ2)
)

= 𝑔′𝑖O(𝑁
𝜁 )ℎ + O(𝑁2𝜁ℎ2) = 𝑔′𝑖O(ℎ

1−𝜁 ), (B.6)

• while if 𝑘 = O(𝑁) = O(ℎ−1), 𝑟 is a constant independent of 𝑁 .

y collecting 𝑟, in 𝑎𝑖,𝑖+𝑘 we have terms of the form (1+ ℎ̃)𝛽 , with ℎ̃ = ℎ𝑖
2𝑟 ,

ℎ𝑖
2𝑟 −

ℎ𝑖+𝑘
𝑟 ,… . In order to use the Taylor expansion of (1+ ℎ̃)𝛽

we first need to prove that ℎ̃→ 0 as 𝑁 → ∞. We divide the analysis in two cases:

(1) if 𝑔′(𝑥̂) ≠ 0 in [0, 1], then from Eqs. (B.1) and (B.6) we have

ℎ𝑖+𝑘
𝑟

=
𝑔′𝑖+𝑘ℎ + O(ℎ2)

𝑔′𝑖O(ℎ1−𝜁 )
= O(ℎ𝜁 ),

which tends to zero as 𝑁 → ∞ for any 0 < 𝜁 < 1.
(2) if 𝑔′(𝑥̂) vanishes in [0, 1], the worst possible scenario happens when ℎ𝑖 ≫ ℎ𝑖+𝑘. Without restrictions to the general case we

assume that 𝑔′(𝑥̂) has a zero of order 𝑡 at 𝑥̂0 = 0, hence 𝑔(𝑥̂) ≈ 𝑥̂𝑡+1 when 𝑥̂→ 0. Then by considering 𝑘 = −𝑁𝜁 and 𝑖 = 𝑁𝜁 + 1,
such that ℎ𝑁𝜁+1 = ℎ𝑖 ≫ ℎ𝑖+𝑘 = ℎ1, we have

ℎ𝑁𝜁+1
∑𝑁𝜁

𝑗=1 ℎ𝑁𝜁+1−𝑗

=
𝑥𝑁𝜁+1 − 𝑥𝑁𝜁

ℎ1 + ℎ2 +⋯ + ℎ𝑁𝜁
=
𝑔(𝑥̂𝑁𝜁+1) − 𝑔(𝑥̂𝑁𝜁 )
𝑔(𝑥̂𝑁𝜁 ) − 𝑔(𝑥̂0)

=

(

𝑁𝜁+1
𝑁

)𝑡+1
−
(

𝑁𝜁

𝑁

)𝑡+1

(

𝑁𝜁

𝑁

)𝑡+1
=
(

1 + 1
𝑁𝜁

)𝑡+1
− 1 = O(ℎ𝜁𝑡),

which tends to zero as 𝑁 → ∞ for any 0 < 𝜁 < 1.
15
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Now, let 𝑁𝜁 < 𝑘 ≤ 𝑁 and approximate the coefficient 𝑎𝑖,𝑖+𝑘 as follows:

𝑎𝑖,𝑖+𝑘 =
𝐾̃
2

[

𝑟𝛽 (1 + ℎ𝑖
2𝑟 )

𝛽 − 𝑟𝛽 (1 + ℎ𝑖
2𝑟 −

ℎ𝑖+𝑘
𝑟 )𝛽

ℎ𝑖+𝑘
+
𝑟𝛽 (1 + ℎ𝑖

2𝑟 )
𝛽 − 𝑟𝛽 (1 + ℎ𝑖

2𝑟 +
ℎ𝑖+𝑘+1
𝑟 )𝛽

ℎ𝑖+𝑘+1
+

−
𝑟𝛽 (1 − ℎ𝑖+1

2𝑟 )𝛽 − 𝑟𝛽 (1 − ℎ𝑖+1
2𝑟 − ℎ𝑖+𝑘

𝑟 )𝛽

ℎ𝑖+𝑘
−
𝑟𝛽 (1 − ℎ𝑖+1

2𝑟 )𝛽 − 𝑟𝛽 (1 − ℎ𝑖+1
2𝑟 + ℎ𝑖+𝑘

𝑟 )𝛽

ℎ𝑖+𝑘+1

]

= 𝐾̃𝑟𝛽

2ℎ𝑖+𝑘ℎ𝑖+𝑘+1

[

ℎ𝑖+𝑘+1

(

(1 +
ℎ𝑖
2𝑟

)𝛽 − (1 +
ℎ𝑖
2𝑟

−
ℎ𝑖+𝑘
𝑟

)𝛽 − (1 −
ℎ𝑖+1
2𝑟

)𝛽 + (1 −
ℎ𝑖+1
2𝑟

−
ℎ𝑖+𝑘
𝑟

)𝛽
)

+

+ ℎ𝑖+𝑘

(

(1 +
ℎ𝑖
2𝑟

)𝛽 − (1 +
ℎ𝑖
2𝑟

+
ℎ𝑖+𝑘+1
𝑟

)𝛽 − (1 −
ℎ𝑖+1
2𝑟

)𝛽 + (1 −
ℎ𝑖+1
2𝑟

+
ℎ𝑖+𝑘
𝑟

)𝛽
)

]

.

By replacing each (1 + ℎ̃)𝛽 with its Taylor expansion

(1 + ℎ̃)𝛽 = 1 + 𝛽ℎ̃ +
𝛽(𝛽 − 1)

2
ℎ̃2 + O(ℎ̃3),

e observe an exact cancellation of the terms of degree 0 and 1 inside the square brackets in 𝑎𝑖,𝑖+𝑘. The exact cancellation happens
even for the term of degree 2 but it is harder to see, therefore we report the computations below:

𝑎𝑖,𝑖+𝑘 =
𝐾̃𝑟𝛽𝛽(𝛽 − 1)
4ℎ𝑖+𝑘ℎ𝑖+𝑘+1

[

ℎ𝑖+𝑘+1

( ℎ2𝑖
4𝑟2

+ O(ℎ3𝑖 ) − (
ℎ𝑖
2𝑟

−
ℎ𝑖+𝑘
𝑟

)2 + O((ℎ𝑖 − ℎ𝑖+𝑘)3) −
ℎ2𝑖+1
4𝑟2

+ O(ℎ3𝑖+1)+

+ (
ℎ𝑖+1
2𝑟

+
ℎ𝑖+𝑘
𝑟

)2 + O((ℎ𝑖+1 + ℎ𝑖+𝑘)3)
)

+

+ ℎ𝑖+𝑘

( ℎ2𝑖
4𝑟2

+ O(ℎ3𝑖 ) − (
ℎ𝑖
2𝑟

+
ℎ𝑖+𝑘+1
𝑟

)2 + O((ℎ𝑖 + ℎ𝑖+𝑘+1)3) −
ℎ2𝑖+1
4𝑟2

+ O(ℎ3𝑖+1)+

+ (−
ℎ𝑖+1
2𝑟

+
ℎ𝑖+𝑘+1
𝑟

)2 + O((−ℎ𝑖+1 + ℎ𝑖+𝑘+1)3)
)

]

=
𝐾̃𝑟𝛽−2𝛽(𝛽 − 1)
4ℎ𝑖+𝑘ℎ𝑖+𝑘+1

(

ℎ𝑖+𝑘+1(ℎ𝑖ℎ𝑖+𝑘 + ℎ𝑖+1ℎ𝑖+𝑘) − ℎ𝑖+𝑘(ℎ𝑖ℎ𝑖+𝑘+1 + ℎ𝑖+1ℎ𝑖+𝑘+1) + O(ℎ4)
)

= 𝑟𝛽−2

𝑔′𝑖+𝑘
2
O(ℎ2).

n the case where

• 𝑘 = O(𝑁𝜁 ), from Eq. (B.6) we have

ℎ1−𝛽𝑎𝑖,𝑖+𝑘 = O(ℎ1−𝛽+2+(1−𝜁 )(𝛽−2)) = O(ℎ1−𝛽+2+𝛽−2+2𝜁−𝛽𝜁 ) = o(ℎ1+𝜁 ), (B.7)

• 𝑘 = O(𝑁), since 𝑟 has a constant value, we have

ℎ1−𝛽𝑎𝑖,𝑖+𝑘 = O(ℎ1−𝛽+2) = o(ℎ2). (B.8)

Let 𝐵𝑁,𝑀 be a diagonal-times-Toeplitz banded matrix of the form

𝐵𝑁,𝑀 = 𝐷𝑁 (𝑑(𝑥))𝑇𝑁 (𝑝𝛽𝑀 (𝜃)),

with 𝑑(𝑥) = 𝐾̃
2𝛽 (𝑔′(𝑥))1−𝛽 and 𝑝𝛽𝑀 (𝜃) being the symbol in Eq. (14). From Proposition 2.5 we have

{{𝐵𝑁,𝑀}𝑁}𝑀 ∼𝜎
(

𝑑(𝑥)𝑝𝛽𝑀 (𝜃), [0, 1] × [−𝜋, 𝜋]
)

. (B.9)

We now prove that {{𝐵𝑁,𝑀}𝑁}𝑀 is an a.c.s for {ℎ1−𝛽𝐴𝑁}𝑁 .
Suppose that 𝑔′(𝑥̃) ≠ 0 in [0, 1], then, by choosing 𝑀 = 𝑁𝜁 , from Eqs. (B.3), (B.4), (B.5) and (B.7) we have that matrix

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁 is a ‘‘symmetric Toeplitz’’ matrix, whose first row is

O(ℎ) O(ℎ) O(2ℎ) O(3ℎ) ⋯ O(𝑁𝜁ℎ)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁𝜁 coefficients

o(ℎ1+𝜁 ) ⋯ o(ℎ1+𝜁 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁−𝑁𝜁−1 coefficients
. (B.10)

Note that the ‘‘symmetric Toeplitz’’ structure holds only while keeping O(⋅) and o(⋅). When we replace O(⋅) and o(⋅) with the exact
16

values the structure could be lost.
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Thanks to the structure we have

‖

‖

‖

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁
‖

‖

‖1
≤ 2

⎛

⎜

⎜

⎝

O(ℎ) +
𝑁𝜁
∑

𝑘=1
O(𝑘ℎ) + o(ℎ1+𝜁 )(𝑁 −𝑁𝜁 − 1)

⎞

⎟

⎟

⎠

= O(ℎ) + O(𝑁2𝜁ℎ) + o((𝑁 −𝑁𝜁 − 1)ℎ1+𝜁 )

= O(ℎ) + O(ℎ1−2𝜁 ) + o(ℎ𝜁 − ℎ − ℎ1+𝜁 ),
‖

‖

‖

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁
‖

‖

‖∞
≤ O(ℎ) + O(ℎ1−2𝜁 ) + o(ℎ𝜁 − ℎ − ℎ1+𝜁 ),

and through the Hölder inequality,

‖

‖

‖

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁
‖

‖

‖2
≤
√

‖

‖

‖

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁
‖

‖

‖1
‖

‖

‖

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁
‖

‖

‖∞
≤ O(ℎ) + O(ℎ1−2𝜁 ) + o(ℎ𝜁 − ℎ − ℎ1+𝜁 ), (B.11)

which tends to zero as 𝑁 → ∞ if 0 < 𝜁 < 1
2 . From Definition 2.6 it follows that {{𝐵𝑁,𝑀}𝑁}𝑀 is an a.c.s for {ℎ1−𝛽𝐴𝑁}𝑁 , and

rom Eq. (B.9) and Theorem 2.7 we have the thesis, since from Proposition 4.1 it holds that 𝑝𝛽𝑀 (𝜃) converges to 𝑝𝛽 (𝜃).
Suppose now that there exist 𝑥̃(1),… , 𝑥̃(𝑠) ∈ [0, 1] such that 𝑔′(𝑥̃(𝑘)) = 0, ∀𝑘 and consider the intervals 𝐵(𝑥̃(𝑘), 1

𝑀 ) = {𝑥̃ ∈ [0, 1] ∶
|

|

|

𝑥̃ − 𝑥̃(𝑘)||
|

< 1
𝑀 }. The function 𝑔′(𝑥) is continuous and strictly positive on [0, 1] ⧵ 𝐼𝑀 ∀𝑀 , where

𝐼𝑀 =
𝑠
⋃

𝑘=1
𝐵
(

𝑥̃(𝑘), 1
𝑀

)

,

herefore we write ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑀 = 𝑁𝑁,𝑀 + 𝑅𝑁,𝑀 , where matrices 𝑁𝑁,𝑀 , 𝑅𝑁,𝑀 have small-norm and low-rank, respectively.
If we define 𝑎̃𝑖,𝑗 =

(

ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑀
)

𝑖,𝑗 , the matrix 𝑅𝑁,𝑀 is sparse and its entries are

𝑟𝑖,𝑗 =

{

𝑎̃𝑖,𝑗 , if 𝑥̂𝑖 ∈ 𝐼𝑀 or 𝑥̂𝑗 ∈ 𝐼𝑀
0, otherwise.

ence, given the equispaced grid 𝑥̂𝑖 = 𝑖ℎ, 𝑖 = 1,… , 𝑁 , then

rank
(

𝑅𝑁,𝑀
)

≤ 2|𝐼𝑀 | ≤ 2𝑠
( 2∕𝑀

ℎ
+ 1

)

= 2𝑠
( 2
𝑀

+ 2
𝑁𝑀

+ 1
𝑁

)

𝑁.

Moreover, as 𝑅𝑁,𝑀 contains every coefficient 𝑎̃𝑖,𝑗 which has a 𝑔′𝑖 , with 𝑖 ∈ 𝐼𝑀 in the denominator, the matrix 𝑁𝑁,𝑀 can be
approximated as in (B.11). In conclusion, for each 𝑀 there exists 𝑁𝑀 such that for 𝑁 > 𝑁𝑀 , rank(𝑅𝑁,𝑀 ) ≤ 3𝑠𝑁

𝑀 and ‖

‖

𝑁𝑁,𝑀
‖

‖∞ ≤ 1
𝑀 ,

which, from Definition 2.6, means that {{𝐵𝑁,𝑀}𝑁}𝑀 is an a.c.s for {ℎ1−𝛽𝐴𝑁}𝑁 and the thesis again follows from Eq. (B.9) and
Theorem 2.7.

Appendix C. Proof of Theorem 4.3

The thesis is proven by combining Theorem 4.2 with GLT1 and GLT5. Therefore, we only need to show that GLT5 holds for the
atrix sequence in Eq. (15). We recall that GLT5 consists in proving that

lim𝑁→∞

‖

‖

‖

ℎ1−𝛽𝐴𝑁 − ℎ1−𝛽𝐴H
𝑁
‖

‖

‖tr
𝑁

= 0,

with ℎ = 1
𝑁+1 .

Let us now denote 𝑎̃𝑖,𝑗 = ℎ1−𝛽
(

𝐴𝑁 − 𝐴H
𝑁
)

𝑖𝑗 . Then, since Eqs. (B.7) and (B.8) hold also for negative values of 𝑘, we have

𝑎̃𝑖,𝑖+𝑘 = ℎ1−𝛽 (𝑎𝑖,𝑖+𝑘 − 𝑎𝑖+𝑘,𝑖) = ℎ1−𝛽 (𝑎𝑖,𝑖+𝑘 − 𝑎𝑗,𝑗−𝑘) = 𝑂(ℎ1+𝜁 ),

with 𝑗 = 𝑖 + 𝑘, for 𝑁𝜁 < |𝑘| ≤ 𝑁 . From Eq. (B.5) we have,

𝑎̃𝑖,𝑖+𝑘 = ℎ1−𝛽 (𝑎𝑖,𝑖+𝑘 − 𝑎𝑗,𝑗−𝑘) =
𝐾̃

2𝛽𝑔′𝑖
1−𝛽

[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

+ O(𝑘ℎ)+

−
⎛

⎜

⎜

⎝

𝐾̃
2𝛽𝑔′𝑗

1−𝛽

[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

+ O(𝑘ℎ)
⎞

⎟

⎟

⎠

=

(

1
𝑔′𝑖

1−𝛽
− 1
𝑔′1−𝛽𝑖+𝑘

)

𝐾̃
2𝛽

[

3(2𝑘 + 1)𝛽 − 3(2𝑘 − 1)𝛽 + (2𝑘 − 3)𝛽 − (2𝑘 + 3)𝛽
]

+ O(𝑘ℎ)

= 𝑂(𝑘ℎ),

for 0 ≤ |𝑘| ≤ 𝑁𝜁 . Therefore, a similar reasoning to the one made for ℎ1−𝛽𝐴𝑁 − 𝐵𝑁,𝑁𝜁 in Eq. (B.10) can be done also for
ℎ1−𝛽

(

𝐴𝑁 − 𝐴H
𝑁
)

. Finally, from Hölder inequality it follows

ℎ1−𝛽 ‖‖
‖

𝐴𝑁 − 𝐴H
𝑁
‖

‖

‖tr ≤
𝑁ℎ1−𝛽 ‖‖

‖

𝐴𝑁 − 𝐴H
𝑁
‖

‖

‖2 ≤ O(ℎ) + O(ℎ1−2𝜁 ) + o(ℎ𝜁 − ℎ − ℎ1+𝜁 ),
17
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which tends to 0 as 𝑁 → ∞ and this concludes the proof.
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